FLOOD INSURANCE STUDY FEDERAL EMERGENCY MANAGEMENT AGENCY **VOLUME 2 OF 4** # MENDOCINO COUNTY, CALIFORNIA AND INCORPORATED AREAS | COMMUNITY NAME | COMMUNITY NUMBER | |---------------------------------------|------------------| | FORT BRAGG, CITY OF | 060184 | | MENDOCINO COUNTY UNINCORPORATED AREAS | 060183 | | POINT ARENA, CITY OF | 060185 | | UKIAH, CITY OF | 060186 | | WILLITS, CITY OF | 060187 | ^{*}No Special Flood Hazard Areas | TRIBAL NATION** | TRIBAL NATION** | |--------------------------------------|--| | CAHTO TRIBE OF LAYTONVILLE RANCHERIA | PINOLEVILLE POMO
NATION (060058) | | COYOTE VALLEY BAND OF POMO INDIANS | POTTER VALLEY TRIBE | | GUIDIVILLE RANCHERIA | REDWOOD VALLEY LITTLE
RIVER BAND OF POMO
INDIANS | | HOPLAND BAND OF POMO INDIANS | ROUND VALLEY INDIAN
TRIBES | | MANCHESTER BAND OF POMO INDIANS | SHERWOOD VALLEY
RANCHERIA OF POMO
INDIANS | ^{**}Federally Recognized Tribal Nations **REVISED: September 19, 2025** FLOOD INSURANCE STUDY NUMBER 06045CV002D Version Number 2.6.4.6 ## **TABLE OF CONTENTS** #### Volume 1 | | <u>Page</u> | |--|----------------------------------| | SECTION 1.0 – INTRODUCTION 1.1 The National Flood Insurance Program 1.2 Purpose of this Flood Insurance Study Report 1.3 Jurisdictions Included in the Flood Insurance Study Project 1.4 Considerations for using this Flood Insurance Study Repo | | | SECTION 2.0 – FLOODPLAIN MANAGEMENT APPLICATIONS | 19 | | 2.1 Floodplain Boundaries 2.2 Floodways 2.3 Base Flood Elevations 2.4 Non-Encroachment Zones 2.5 Coastal Flood Hazard Areas 2.5.1 Water Elevations and the Effects of Waves 2.5.2 Floodplain Boundaries and BFEs for Coastal Areas 2.5.3 Coastal High Hazard Areas 2.5.4 Limit of Moderate Wave Action | 19
29
30
31
31
32 | | SECTION 3.0 – INSURANCE APPLICATIONS 3.1 National Flood Insurance Program Insurance Zones | 35
35 | | SECTION 4.0 – AREA STUDIED | 36 | | 4.1 Basin Description | 36 | | 4.2 Principal Flood Problems4.3 Dams and Other Flood Hazard Reduction Measures | 37
41 | | 4.4 Levee Systems | 41 | | SECTION 5.0 – ENGINEERING METHODS | 44 | | 5.1 Hydrologic Analyses | 44 | | 5.2 Hydraulic Analyses5.3 Coastal Analyses | 52
68 | | 5.3 Coastal Analyses5.3.1 Total Stillwater Elevations | 68 | | 5.3.2 Waves | 70 | | 5.3.3 Coastal Erosion | 70 | | 5.3.4 Wave Hazard Analyses | 70 | | Figures | | | | <u>Page</u> | | Figure 1: FIRM Index | 10 | | Figure 2: FIRM Notes to Users Figure 3: Map Legend for FIRM | 12
15 | # Volume 1 (continued) # Figures (continued) | | | <u>Page</u> | |---|--|---| | Figure
Figure
Figure
Figure | e 4: Floodway Schematic e 5: Wave Runup Transect Schematic e 6: Coastal Transect Schematic e 7: Frequency Discharge-Drainage Area Curves e 8: 1-Percent-Annual-Chance Total Stillwater Elevations for Coastal Areas e 9: Transect Location Map | 30
33
35
52
68
75 | | | <u>Tables</u> | Dogo | | | | <u>Page</u> | | Table | 1: Listing of NFIP Jurisdictions 2: Flooding Sources Included in this FIS Report 3: Flood Zone Designations by Community 4: Basin Characteristics 5: Principal Flood Problems 6: Historic Flooding Elevations 7: Dams and Other Flood Hazard Reduction Measures 8: Levee Systems 9: Summary of Discharges 10: Summary of Non-Coastal Stillwater Elevations 11: Stream Gage Information used to Determine Discharges 12: Summary of Hydrologic and Hydraulic Analyses 13: Roughness Coefficients 14: Summary of Coastal Analyses 15: Tide Gage Analysis Specifics 16: Coastal Transect Parameters | 3
20
36
38
40
41
43
45
52
52
54
66
68
69
71 | | | Volume 2 | | | SECT | ION 5.0 – ENGINEERING METHODS (CONTINUED) | <u>Page</u> | | 5.4 | Alluvial Fan Analysis | 80 | | SECT
6.1
6.2
6.3
6.4
6.5 | Vertical and Horizontal Control Base Map Floodplain and Floodway Delineation Coastal Flood Hazard Mapping FIRM Revisions 6.5.1 Letters of Map Amendment 6.5.2 Letters of Map Revision Based on Fill 6.5.3 Letters of Map Revision 6.5.4 Physical Map Revisions 6.5.5 Contracted Restudies 6.5.6 Community Map History | 80
82
84
112
115
116
116
116
117 | | SECT 7.1 | TION 7.0 – CONTRACTED STUDIES AND COMMUNITY COORDINATION Contracted Studies | 119
119 | | 7.1 | Community Meetings | 126 | ## Volume 2 (continued) | SECTION 8.0 – ADDITIONAL INFORMATION | | <u>Page</u>
128 | |---|--|---| | SECTION 9.0 – BIBLIOGRAPHY AND REFER | RENCES | 129 | | <u>Tables</u> | | | | Table 17: Summary of Alluvial Fan Analyses Table 18: Results of Alluvial Fan Analyses Table 19: Countywide Vertical Datum Convers Table 20: Stream-Based Vertical Datum Convers Table 21: Base Map Sources Table 22: Summary of Topographic Elevation I Table 23: Floodway Data Table 24: Flood Hazard and Non-Encroachme Table 25: Summary of Coastal Transect Mapp Table 26: Incorporated Letters of Map Change Table 27: Community Map History Table 28: Summary of Contracted Studies Incl Table 29: Community Meetings Table 30: Map Repositories Table 31: Additional Information Table 32: Bibliography and References | ersion Data used in Mapping nt Data for Selected Streams ing Considerations | 80
80
81
81
82
85
87
112
113
116
118
119
127
128
129
130 | | <u>Exhibits</u> | | | | Flood Profiles Ackerman Creek Anderson Creek Baechtel Creek Baechtel Creek East Overflow 1 Baechtel Creek East Overflow 2 Baechtel Creek East Overflow 3 Baechtel Creek East Overflow 4 Baechtel Creek East Overflow 5 Baechtel Creek East Overflow 6 Baechtel Creek East Overflow 7 Baechtel Creek East Overflow 7 Baechtel Creek East Overflow 8 Baechtel Creek East Overflow 9 Baechtel Creek West Overflow 1 Baechtel Creek West Overflow 2 Baechtel Creek West Overflow 3 Baechtel Creek West Overflow 4 Volume 3 | Panel
01-02 P
03-04 P
05-12 P
13 P
14-15 P
16-17 P
18 P
19-20 P
21-22 P
23 P
24 P
25 P
26 P
27 P
28 P
29 P | | | Exhibits (conti | nued) | | | Baechtel Creek West Overflow 5 Baechtel Creek West Overflow 6 Baechtel Creek West Overflow 7 Baechtel Creek West Overflow 8 | 30 P
31 P
32 P
33 P | | ## Volume 3 (continued) #### Exhibits (continued) | Flood Profiles | <u>Panel</u> | |---|--------------| | Berry Creek | 34-39 P | | Broaddus Creek | 40-43 P | | Broaddus Creek East Overflow 1 | 44 P | | Broaddus Creek East Overflow 2 | 45 P | | Davis Creek | 46-51 P | | Doolin Creek | 52-57 P | | East Fork Russian River | 58 P | | Eel River | 59-60 P | | Feliz Creek | 61-62 P | | Forsythe Creek | 63-64 P | | Gibson Creek | 65-78 P | | Haehl Creek | 79-83 P | | Hensley Creek | 84-85 P | | Mill Creek (At Redwood Valley) | 86-87 P | | Mill Creek (Near Talmage) | 88-89 P | | Mill Creek (At Willits) | 90-95 P | | Mill Creek (At Willits) East Overflow 1 | 96-97 P | | Mill Creek (At Willits) East Overflow 2 | 98 P | | Mill Creek (At Willits) East Overflow 3 | 99 P | | Mill Creek (At Willits) East Overflow 4 | 100 P | | Mill Creek (At Willits) East Overflow 5 | 101 P | | Mill Creek (At Willits) East Overflow 6 | 102 P | | Mill Creek (At Willits) East Overflow 7 | 103 P | | Mill Creek (At Willits) East Overflow 8 | 104 P | | Mill Creek (At Willits) West Overflow 1 | 105 P | | Mill Creek (At Willits) West Overflow 2 | 106 P | | Mill Creek (At Willits) West Overflow 3 | 107 P | | Mill Creek (At Willits) West Overflow 4 | 108 P | | Mill Creek (At Willits) West Overflow 5 | 109 P | | North Fork Mill Creek | 110 P | | Noyo River | 111 P | #### Volume 4 | Flood Profiles | <u>Panel</u> | |----------------------------------|--------------| | Orrs Creek | 112-118 P | | Robinson Creek | 119-124 P | | Russian River | 125-135 P | | Scout Lake Creek | 136-141 P | |
Sulphur Creek | 142-144 P | | Tenmile Creek | 145 P | | Town Creek | 146 P | | Unnamed Tributary to Berry Creek | 147-150 P | | Upp Creek | 151 P | | York Creek | 152-153 P | ## **Published Separately** Flood Insurance Rate Map (FIRM) #### 5.4 Alluvial Fan Analyses This section is not applicable to this Flood Risk Project. Table 17: Summary of Alluvial Fan Analyses [Not Applicable to this Flood Risk Project] Table 18: Results of Alluvial Fan Analyses [Not Applicable to this Flood Risk Project] #### **SECTION 6.0 – MAPPING METHODS** #### 6.1 Vertical and Horizontal Control All FIS Reports and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum used for newly created or revised FIS Reports and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD29). With the completion of the North American Vertical Datum of 1988 (NAVD88), many FIS Reports and FIRMs are now prepared using NAVD88 as the referenced vertical datum. Flood elevations shown in this FIS Report and on the FIRMs are referenced to NAVD88. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between NGVD29 and NAVD88 or other datum conversion, visit the National Geodetic Survey website at www.ngs.noaa.gov. Temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the archived project documentation associated with the FIS Report and the FIRMs for this community. Interested individuals may contact FEMA to access these data. To obtain current elevation, description, and/or location information for benchmarks in the area, please visit the NGS website at www.ngs.noaa.gov. The datum conversion locations and values that were calculated for Mendocino County are provided in Table 19. # Table 19: Countywide Vertical Datum Conversion [Not Applicable to this Flood Risk Project] A countywide conversion factor could not be generated for Mendocino County because the maximum variance from average exceeds 0.25 feet. Calculations for the vertical offsets on a stream by stream basis are depicted in Table 20. **Table 20: Stream-Based Vertical Datum Conversion** | Flooding Source | Average Vertical Datum Conversion Factor (feet) | |----------------------------------|---| | Ackerman Creek | +2.88 | | Anderson Creek | +2.91 | | Baechtel Creek | +3.01 | | Berry Creek | +3.01 | | Broaddus Creek | +3.01 | | Davis Creek | +3.01 | | Doolin Creek | +2.87 | | East Fork Russian River | +2.86 | | Eel River | +2.96 | | Feliz Creek | +2.85 | | Forsythe Creek | +2.90 | | Gibson Creek | +2.88 | | Haehl Creek | +3.01 | | Hensley Creek | +2.88 | | Mill Creek (at Redwood Valley) | +2.98 | | Mill Creek (at Talmage) | +2.87 | | Mill Creek (at Willits) | +3.01 | | North Fork Mill Creek | +2.88 | | Noyo River | +2.95 | | Orrs Creek | +2.88 | | Robinson Creek | +2.91 | | Russian River | +2.85 | | Scout Lake Creek | +3.01 | | Sulphur Creek | +2.87 | | Tenmile Creek | +3.05 | | Town Creek | +2.99 | | Unnamed Tributary to Berry Creek | +3.01 | | Upp Creek | +3.01 | | York Creek | +2.88 | | Static Zone at Arena Cove | +2.92 | | Static Zone at Gualala River | +2.84 | #### 6.2 Base Map The FIRMs and FIS Report for this project have been produced in a digital format. The flood hazard information was converted to a Geographic Information System (GIS) format that meets FEMA's FIRM Database specifications and geographic information standards. This information is provided in a digital format so that it can be incorporated into a local GIS and be accessed more easily by the community. The FIRM Database includes most of the tabular information contained in the FIS Report in such a way that the data can be associated with pertinent spatial features. For example, the information contained in the Floodway Data table and Flood Profiles can be linked to the cross sections that are shown on the FIRMs. Additional information about the FIRM Database and its contents can be found in FEMA's *Guidelines and Standards for Flood Risk Analysis and Mapping*, www.fema.gov/flood-maps/guidance-partners/guidelines-standards. Base map information shown on the FIRM was derived from the sources described in Table 21. **Table 21: Base Map Sources** | Data Type | Provider | Data
Date | Data
Scale | Data Description | |--|--|--------------|---------------|--| | (NAIP) National
Agriculture Imagery
Program | U.S. Department of Agriculture -
Farm Service
Agency | 2010 | 1:24,000 | Structures from National Agriculture
Imagery Program | | (NAIP) National
Agriculture Imagery
Program | U.S. Department of Agriculture -
Farm Service
Agency | 2005 | N/A | Orthophotography used for countywide study dated 6/2/2011 | | (NAIP) National
Agriculture Imagery
Program | U.S. Department of Agriculture -
Farm Service
Agency | 2014 | 1:24,000 | Orthophotography used for PMR study dated 9/1/2022 | | Base Map Imagery | USDA-NRCS
Aerial Photography | 2016 | 1:24,000 | Base Map Imagery | | Corporate
boundaries,
Street centerlines | Mendocino County GIS | 2008 | 1:24,000 | The city limits shapefile is a polygon file representing the corporate boundaries within Mendocino County. Also included is a street centerline file for roads within Mendocino County, CA | | County boundary for the County of Mendocino | National Atlas of the United States | 2000 | 1:24,000 | Mendocino County Boundary | | DWR 2005 Draft
Levee Database | California Department of Water
Resources | 1979 | N/A | N/A | | FIS Backup Data
Mendocino County,
California | Federal Emergency
Management Agency | 1979 | 1:24,000 | Effective flooding and flood lines | Table 21: Base Map Sources (continued) | | | Data | Data | | |---|---|------|----------|--| | Data Type | Provider | Date | Scale | Data Description | | National
Hydrography
Dataset | U.S. Geological Survey | 2006 | 1:24,000 | Stream centerlines, Lakes and ponds in Mendocino County, California. | | OEC 1997 Levee database | Army Corps of Engineers | 1997 | 1:24,000 | OEC 1997 Levee database | | Permanent Bench
Mark Data Sheets | National Geodetic Survey | 2002 | 1:24,000 | Spatial and attribute information for permanent benchmarks. | | Pinoleville Pomo
Nation Tribal
Boundary | Bureau of Indian Affairs (BIA) | 2018 | 1:24,000 | Political Boundary Indian Tribe | | Political Area | California State Geoportal | 2021 | 1:24,000 | Political Boundary | | Public Land Survey
System | California Spatial Information
Library | 1997 | 1:24,000 | To provide information about public land use for the state of California. | | TIGER/Line File -
Transportation Lines,
Mendocino, CA 2017 | U.S. Department of Commerce,
U.S. Census Bureau,
Geography Division | 2017 | 1:24,000 | Transportation Lines | | TIGER/Line Files,
2013 Mendocino
County | U.S. Department of Commerce,
U.S. Census Bureau,
Geography Division | 2013 | 1:12,000 | Effective Transportation Lines | | TIGER/Line Files,
2006, Second Edition | U.S. Department of Commerce,
U.S. Census Bureau,
Geography Division | 2006 | 1:24,000 | Roads and railroads downloaded from the 2011 countywide study | | Transportation Lines | U.S. Department of Commerce,
U.S. Census Bureau,
Geography | 2018 | 1:24,000 | Transportation lines | | USDA-FSA-
APFO
NAIP MrSID
Mosaic-
Orthoimagery for
Mendocino
County, CA -
2014 | Department of Agriculture -
Farm Service Agency | 2014 | 1:24,000 | Orthoimagery was downloaded from USDA website. | | USGS 7.5-minute
Series Topographic
Maps | U.S. Geological Survey | 1989 | 1:24,000 | Spatial and attribute information for the index of USGS 7.5-minute Series Topographic Map boundaries | | Water lines and water area | U.S. Geological Survey | 2018 | 1:24,000 | Water areas and water lines | #### 6.3 Floodplain and Floodway Delineation The FIRM shows tints, screens, and symbols to indicate floodplains and floodways as well as the locations of selected cross sections used in the hydraulic analyses and floodway computations. For riverine flooding sources, the mapped floodplain boundaries shown on the FIRM have been delineated using the flood elevations determined at each cross section; between cross sections, the boundaries were interpolated using the topographic elevation data described in Table 22. For each coastal flooding source studied as part of this FIS Report, the mapped floodplain boundaries on the FIRM have been delineated using the flood and wave elevations determined at each transect; between transects, boundaries were delineated using land use and land cover data, the topographic elevation data described in Table 22, and knowledge of coastal flood processes. In ponding areas, flood elevations were determined at each junction of the model; between junctions, boundaries were interpolated using the topographic elevation data described in Table 22.In cases where the 1-percent and 0.2-percent-annual-chance floodplain
boundaries are close together, only the 1-percent-annual-chance floodplain boundary has been shown. Small areas within the floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data. The floodway widths presented in this FIS Report and on the FIRM were computed for certain stream segments on the basis of equal conveyance reduction from each side of the floodplain. Floodway widths were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. Table 2 indicates the flooding sources for which floodways have been determined. The results of the floodway computations for those flooding sources have been tabulated for selected cross sections and are shown in Table 23, "Floodway Data." Certain flooding sources may have been studied that do not have published BFEs on the FIRMs, or for which there is a need to report the 1-percent-annual-chance flood elevations at selected cross sections because a published Flood Profile does not exist in this FIS Report. These streams may have also been studied using methods to determine nonencroachment zones rather than floodways. For these flooding sources, the 1-percentannual-chance floodplain boundaries have been delineated using the flood elevations determined at each cross section; between cross sections, the boundaries were interpolated using the topographic elevation data described in Table 22. All topographic data used for modeling or mapping has been converted as necessary to NAVD88. The 1percent-annual-chance elevations for selected cross sections along these flooding sources, along with their non-encroachment widths, if calculated, are shown in Table 24, "Flood Hazard Non-Encroachment and Data for Selected Streams." Table 22: Summary of Topographic Elevation Data used in Mapping | | | Source for Topographic Elevation Data | | | | |---|--|--|---|------------------------|---------------| | Community | Flooding
Source | Description | Vertical
Accuracy | Horizontal
Accuracy | Citation | | Fort Bragg,
City of;
Mendocino
County; Point
Arena, City of | All within
HUC
18010108 | 2011 CA OPC LiDAR /2010 CA State University, Monterey Bay Seafloor Mapping Lab Bathymetry/ NGDC/NOAA Bathymetry/Topography | 1.2 ft @
95% | RMSEr=
11 ft. | LiDAR
2011 | | Mendocino
County;
Pinoleville
Pomo
Nation | Ackerman
Creek | 2018 CA FEMA R9
LiDAR Project | 14 cm (bare earth) 27.1 cm (vegetation) | 50.6 cm | FEMA
2018 | | Mendocino
County;
Ukiah, City
of | Doolin
Creek | 2018 CA FEMA R9
LiDAR Project | 14 cm (bare earth) 27.1 cm (vegetation) | 50.6 cm | FEMA
2018 | | Mendocino
County;
Ukiah, City
of | Gibson
Creek | 2018 CA FEMA R9
LiDAR Project | 14 cm (bare earth) 27.1 cm (vegetation) | 50.6 cm | FEMA
2018 | | Mendocino
County | Hensley
Creek | N/A | N/A | N/A | N/A | | Mendocino
County | Howard
Creek | USGS | 2 feet | 2 feet | USGS
2018 | | Mendocino
County | McClure
Creek | USGS | 2 feet | 2 feet | USGS
2018 | | Mendocino
County | Mill
Creek
(NEAR
TALMA
GE) | N/A | N/A | N/A | N/A | | Mendocino
County;
Ukiah, City
of | Orrs
Creek | 2018 CA FEMA R9
LiDAR Project | 14 cm (bare earth) 27.1 cm (vegetation) | 50.6 cm | FEMA
2018 | | Mendocino
County | Russian
River | N/A | N/A | N/A | N/A | | Mendocino
County | Sulphur
Creek | N/A | N/A | N/A | N/A | Table 22: Summary of Topographic Elevation Data used in Mapping (continued) | | | Source for Topographic Elevation Data | | | | |--|--|---------------------------------------|----------------------|------------------------|---------------| | Community | Flooding
Source | Description | Vertical
Accuracy | Horizontal
Accuracy | Citation | | Mendocino
County | Unnamed
Tributary
to
McClure
Creek | USGS | 2 feet | 2 feet | USGS
2018 | | Mendocino
County | Unnamed
Tributary
to
Russian
River | USGS | 2 feet | 2 feet | USGS
2018 | | Mendocino
County, Willits,
City of | All with
analysis
completed
in 2017 | 2010 airborne-
generated LiDAR | N/A | N/A | LiDAR
2010 | | Ukiah, City of | Russian
River | N/A | N/A | N/A | N/A | BFEs shown at cross sections on the FIRM represent the 1-percent-annual-chance water surface elevations shown on the Flood Profiles and in the Floodway Data tables in the FIS Report. Rounded whole-foot elevations may be shown on the FIRM in coastal areas, areas of ponding, and other areas with static base flood elevations. Table 23: Floodway Data | LOCAT | TON | FLOODWAY | | | 1% ANNU | AL CHANCE FL
ELEVATION (FI | OOD WATER SU
EET NAVD88) | RFACE | |----------------------------|---|------------------------------------|--|--|--|---|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A
B
C
D
E
F | 1,750
3,400
4,155
7,510
9,045
11,470 | 75
80
120
160
60
40 | 938
424
823
1,043
575
378 | 5.7
12.7
6.5
5.1
9.3
14.1 | 616.5
624.1
627.8
642.4
650.7
673.7 | 616.1 ²
624.1
627.8
642.4
650.7
673.7 | 616.6
624.1
628.7
643.0
650.7
673.7 | 0.5
0.0
0.9
0.6
0.0
0.0 | ¹ Feet above confluence with Russian River ² Elevation computed without consideration of backwater effects from Russian River | TΑ | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|---------------------------------| | BLE | MENDOCINO COUNTY, CALIFORNIA | 1 2002117(1 27(1)) | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: ACKERMAN CREEK | Table 23: Floodway Data (continued) | LOCAT | LOCATION FLOODWAY 1% ANNUAL CHANCE FLO ELEVATION (FE | | | FLOODWAY | | | | RFACE | |-------------------|--|---|---|--|---|---|---|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H I | 0
3,280
6,215
8,650
10,475
12,330
14,010
16,500
19,030 | 250
240
420
115
200
100
75
130
40 | 1,339
843
1,025
754
1,070
537
687
623
287 | 6.8
10.8
8.9
8.6
5.6
11.1
8.7
9.6
14.5 | 290.7
309.2
327.5
347.6
362.6
378.7
399.4
422.5
456.2 | 290.7
309.2
327.5
347.6
362.6
378.7
399.4
422.5
456.2 | 291.7
309.2
327.5
347.8
363.5
378.7
399.8
423.1
456.2 | 1.0
0.0
0.0
0.2
0.9
0.0
0.4
0.6
0.0 | ¹ Feet above 180 feet upstream of the confluence with Con Creek | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-------|-------------------------------------|---------------------------------| | BLE B | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: ANDERSON CREEK | Table 23: Floodway Data (continued) | LOCA | LOCATION | | FLOODWAY | | 1% ANNU | AL CHANCE FLO
ELEVATION (FE | OOD WATER SUR | RFACE | |-------------------|--|--|---|---|---|---|---|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) ² | SECTION
AREA
(SQ. FEET) ² | MEAN
VELOCITY
(FEET/SEC) ² | REGULATORY | WITHOUT
FLOODWAY ³ | WITH
FLOODWAY ² | INCREASE | | A B C D E F G H I | 15,022
16,534
17,012
18,352
18,389
20,867
21,285
22,149
24,350 | 57
87
74
58
59
73
73
64
63 | 403
454
557
389
345
482
454
427
467 | 8.0
6.1
5.6
5.8
6.5
6.7
7.1
7.6
7.0 | 1,350.2
1,354.2
1,355.7
1,359.2
1,359.6
1,369.2
1,370.9
1,373.8
1,382.5 | 1,350.2
1,354.2
1,355.7
1,359.2
1,359.6
1,369.2
1,370.9
1,373.8
1,382.5 | 1,350.7
1,354.4
1,355.8
1,359.2
1,359.6
1,369.5
1,371.2
1,373.9
1,382.6 | 0.5
0.2
0.1
0.0
0.0
0.3
0.3
0.1
0.1 | ¹ Stream distance in feet above
confluence with Outlet Creek ² Values derived from the 1D/2D unsteady state floodway model for maximum water surface profile ³ Without Floodway' values are from the 1D/2D unsteady state base (100-Year) model for maximum water surface profile | ΤA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|---------------------------------| | BLE | MENDOCINO COUNTY, CALIFORNIA | 1 20 2 11111 | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: BAECHTEL CREEK | Table 23: Floodway Data (continued) | LO | CATION | | FLOODWAY | | | AL CHANCE FLO
ELEVATION (FE | OOD WATER SUR | FACE | |------------------|---|--|---|---|---|--|--|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH ²
(FEET) | SECTION
AREA
(SQ. FEET) ² | MEAN
VELOCITY
(FEET/SEC) ² | REGULATORY | WITHOUT
FLOODWAY ³ | WITH
FLOODWAY ² | INCREASE | | A B C D E F G | 2,783
4,674
5,367
6,308
7,864
9,107
9,551 | 64
95
111
129
68
78
55 | 321
500
691
776
291
462
400 | 5.7
5.3
3.9
3.4
9.3
5.8
6.8 | 1,356.9
1,362.7
1,367.2
1,371.7
1,375.6
1,381.3
1,382.4 | 1356.9
1362.7
1367.2
1371.7
1375.6
1381.3
1382.4 | 1357.3
1363.1
1367.5
1372.0
1375.6
1381.3
1382.4 | 0.4
0.4
0.3
0.3
0.0
0.0
0.0 | ¹ Stream distance in feet above confluence with Baechtel Creek ² Values derived from the 1D/2D unsteady state floodway model for maximum water surface profile ³ Without Floodway' values are from the 1D/2D unsteady state base (100-Year) model for maximum water surface profile | ΤA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|---------------------------------| | BLE | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: BROADDUS CREEK | Table 24: Floodway Data (continued) | LOCA | ΓΙΟΝ | FLOODWAY | | 1% ANNU | AL CHANCE FLO
ELEVATION (FE | OOD WATER SUR
ET NAVD88) | FACE | | |------------------|-----------------------|------------------------------|--|---|--------------------------------|----------------------------------|-------------------------------|----------| | CROSS
SECTION | DISTANCE ¹ | WIDTH ²
(FEET) | SECTION
AREA
(SQ. FEET) ² | MEAN
VELOCITY
(FEET/SEC) ² | REGULATORY | WITHOUT
FLOODWAY ³ | WITH
FLOODWAY ² | INCREASE | | Α | 18,412 | 150 | 798 | 4.9 | 1,366.2 | 1,366.2 | 1,366.2 | 0.0 | | В | 20,046 | 84 | 767 | 5.1 | 1,373.8 | 1,373.8 | 1,373.8 | 0.0 | | С | 21,932 | 148 | 1,026 | 3.8 | 1,381.6 | 1,381.6 | 1,381.6 | 0.0 | | | | | | | | | | | ¹ Stream distance in feet above confluence with Baechtel Creek ² Values derived from the 1D/2D unsteady state floodway model for maximum water surface profile ³ Without Floodway' values are from the 1D/2D unsteady state base (100-Year) model for maximum water surface profile | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|------------------------------| | BLE | MENDOCINO COUNTY, CALIFORNIA | 1 2002 111 11 211111 | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: DAVIS CREEK | Table 23: Floodway Data (continued) | LOCA | LOCATION FLOODWAY | | , | 1% ANNU | AL CHANCE FL
ELEVATION (FI | OOD WATER SU
EET NAVD88) | RFACE | | |-------------------------|--|--|--|--|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H I J K L | 3,499
4,117
4,580
5,128
5,864
6,535
7,458
8,529
8,869
9,435
9,682
9,980 | 247
260
84
42
81
21
62
28
38
56
38
41 | 340
399
167
180
169
101
129
119
203
157
107
210 | 2.9
2.5
5.9
5.5
5.9
9.8
7.7
7.0
4.1
5.4
7.9
4.0 | 597.2
601.6
605.8
611.0
619.7
626.5
640.1
654.1
661.3
670.2
675.8
680.7 | 597.2
601.6
605.8
611.0
619.7
626.5
640.1
654.1
661.3
670.2
675.8
680.7 | 597.6
602.6
605.8
611.9
619.7
626.8
640.3
654.2
661.6
670.2
676.1
680.7 | 0.4
1.0
0.0
0.9
0.0
0.3
0.2
0.1
0.3
0.0
0.3
0.0 | ¹ Feet above confluence with Russian River | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |----|-------------------------------------|-------------------------------|--|--|--| | | MENDOCINO COUNTY, CALIFORNIA | - LOGDINI DAIA | | | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: DOOLIN CREEK | | | | Table 23: Floodway Data (continued) | LOCA | TION | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |------------------|-------------------------------|-----------------------|-------------------------------|--------------------------------|---|----------------------------------|----------------------------------|--------------------------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A
B
C
D | 10
1,750
3,115
4,670 | 70
70
115
70 | 1,070
967
1,587
921 | 6.4
7.0
4.3
7.4 | 932.2
936.0
940.5
943.0 | 932.2
936.0
940.5
943.0 | 933.2
936.6
941.1
944.0 | 1.0
0.6
0.6
1.0 | ¹ Feet above 0.3 miles downstream of Centerville Road | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|--| | BLE | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: EAST FORK RUSSIAN RIVER | Table 23: Floodway Data (continued) | LOCA | ΓΙΟΝ | | FLOODWAY | , | 1% ANNU | AL CHANCE FL
ELEVATION (FI | OOD WATER SU
EET NAVD88) | RFACE | |------------------|--|---|--|---|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | ABCDEFGHIJ | 0
1,180
2,310
3,640
5,190
6,460
7,790
9,680
12,660
15,540 | 360
290
200
260
260
260
200
450
410 | 8,852
7,262
6,532
5,711
7,641
7,153
5,891
4,692
9,415
9,171 | 9.3
11.4
12.6
14.4
10.8
11.5
14.0
17.6
8.8
9.0 | 1,467.30
1,468.80
1,470.20
1,471.60
1,475.90
1,477.00
1,481.70
1,520.90
1,521.70 | 1,467.30
1,468.80
1,470.20
1,471.60
1,475.90
1,477.00
1,477.00
1,481.70
1,520.90
1,521.70 | 1,468.30
1,469.70
1,470.90
1,472.00
1,476.90
1,477.70
1,481.80
1,520.90
1,522.50 | 1.0
0.9
0.7
0.4
1.0
0.7
0.7
0.1
0.0
0.8 | ¹ Feet above confluence with Hale Creek | ΑT | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|----------------------------| | BLE | MENDOCINO COUNTY, CALIFORNIA | 1200211111 | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: EEL RIVER | Table 23: Floodway Data (continued) | LOCAT | ΓΙΟΝ | | FLOODWAY | | 1% ANNU | AL CHANCE FL
ELEVATION (FI | OOD WATER SU
EET NAVD88) | RFACE | |------------------|-----------------------------------|-------------------------------|--------------------------------|--------------------------------|----------------------------------|---|----------------------------------|--------------------------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A
B
C
D | 3,945
6,580
9,690
12,175 | 1,000
1,100
1,000
80 | 1,922
5,799
6,590
852 | 4.8
1.6
1.4
8.3 |
498.7
502.8
514.6
524.8 | 491.7 ²
502.8
514.6
524.8 | 492.3
503.7
515.2
525.1 | 0.6
0.9
0.6
0.3 | ¹ Feet above confluence with Russian River ² Elevation computed without consideration of backwater effects from Russian River | AL | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|------------------------------| | BLE | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: FELIZ CREEK | Table 23: Floodway Data (continued) | LOCA | TION | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | |-----------------------|--|---|---|--|---|---|---|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H I J K | 1,470
3,610
6,420
8,350
11,290
13,920
16,600
19,260
21,380
23,530
24,220 | 150
150
240
130
400
180
150
110
190
90 | 1,626
2,558
1,944
1,079
2,477
936
1,172
1,163
769
1,230
806 | 7.3
4.7
6.1
11.0
3.6
9.6
7.2
7.3
11.0
6.9
10.5 | 686.2
697.7
704.5
711.8
720.7
728.5
746.5
761.4
772.4
786.3
790.6 | 686.2
697.7
704.5
711.8
720.7
728.5
746.5
761.4
772.4
786.3
790.6 | 686.6
698.4
705.3
711.8
721.4
728.5
747.4
761.4
773.3
786.8
791.3 | 0.4
0.7
0.8
0.0
0.7
0.0
0.9
0.5
0.7 | ¹ Feet above confluence with Russian River | TAB | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|---------------------------------| | 🖺 | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: FORSYTHE CREEK | Table 23: Floodway Data (continued) | LOCAT | ION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | | |------------------|-----------------------|-----------------|-------------------------------|---------------------------------|----------------|--|---------------------------------------|----------|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/ SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | ۸ | 2,594 | 256 | 327 | 2.3 | 593.6 | 590.3 ² | 590.3 ² | 0.0 | | | | A | 2,748 | 161 | 199 | 4.9 | 593.8 | 590.7 ² | 590.5 ² | 0.0 | | | | B
C | 3,160 | 26 | 125 | 4.9
2.5 | 593.6
594.4 | 590.7 ⁻ 593.0 ² | 590.7 ² 593.0 ² | 0.0 | | | | D | 3,391 | 32 | 161 | 2.0 | 594.4
595.1 | 595.0-
595.1 | 595.0-
595.1 | 0.0 | | | | E | 3,894 | 32
41 | 78 | 5.5 | 596.3 | 596.3 | 596.4 | 0.0 | | | | E
F | 4,599 | 41 | 104 | 4.2 | 599.3 | 599.3 | 599.3 | 0.0 | | | | Ġ | 5,065 | 47 | 112 | 3.9 | 601.2 | 601.2 | 601.2 | 0.0 | | | | H | 5,677 | 35 | 79 | 4.9 | 603.3 | 603.3 | 603.3 | 0.0 | | | | i. | 6,003 | 30 | 33 | 10.6 | 604.8 | 604.8 | 604.8 | 0.0 | | | | J | 6,455 | 28 | 71 | 3.7 | 608.9 | 608.9 | 609.0 | 0.1 | | | | K | 6,825 | 30 | 93 | 3.0 | 610.3 | 610.3 | 610.4 | 0.1 | | | | Ë | 7,217 | 44 | 145 | 2.0 | 611.8 | 611.8 | 611.8 | 0.0 | | | | M | 7,767 | 31 | 35 | 8.4 | 615.5 | 615.5 | 615.5 | 0.0 | | | | N | 8,060 | 23 | 87 | 3.8 | 620.0 | 620.0 | 620.0 | 0.0 | | | | Ö | 8,560 | 22 | 66 | 4.5 | 622.6 | 622.6 | 622.6 | 0.0 | | | | Р | 8,830 | 18 | 70 | 5.9 | 624.9 | 624.9 | 624.9 | 0.0 | | | | | 9,180 | 32 | 81 | 6.3 | 627.4 | 627.4 | 627.4 | 0.0 | | | | R | 9,743 | 52 | 92 | 5.5 | 634.0 | 634.0 | 634.0 | 0.0 | | | | Q
R
S | 10,142 | 27 | 93 | 6.6 | 637.5 | 637.5 | 637.5 | 0.0 | | | | Т | 10,438 | 26 | 131 | 5.5 | 640.7 | 640.7 | 640.7 | 0.0 | | | | U | 10,925 | 24 | 99 | 8.2 | 645.2 | 645.2 | 645.4 | 0.2 | | | | V | 11,269 | 83 | 181 | 4.5 | 651.8 | 651.8 | 651.8 | 0.0 | | | | W | 11,641 | 29 | 58 | 14.7 | 656.2 | 656.2 | 656.2 | 0.0 | | | ¹ Stream distance in feet above confluence with Doolin Creek FEDERAL EMERGENCY MANAGEMENT AGENCY MENDOCINO COUNTY, CA AND INCORPORATED AREAS FLOODING SOURCE: GIBSON CREEK ² Elevation computed without consideration of backwater effects from Russian River Table 23: Floodway Data (continued) | LOCATION | N | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | |---|--|--|--|--|---|---|---|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/ SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | X
Y
Z
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
AL | 11,914
12,148
12,462
12,814
13,080
13,221
13,544
13,797
14,067
14,313
14,586
14,844
15,031
15,481
15,772 | 23
42
37
31
24
30
27
33
22
17
22
24
20
17
16 | 100
185
79
106
106
107
115
176
65
62
86
136
90
62
61 | 6.7
3.6
8.5
6.3
6.2
5.8
3.8
10.2
10.8
7.8
4.9
7.4
10.8
11.0 | 660.3
663.7
665.7
674.2
677.0
685.1
686.5
692.7
698.5
710.1
714.7
725.6
729.9
758.3
803.3 | 660.3
663.7
665.7
674.2
677.0
685.1
686.5
692.7
698.5
710.1
714.7
725.6
729.9
758.3
803.3 | 660.4
664.2
665.7
674.2
677.3
685.1
686.6
693.2
698.5
710.1
715.3
725.7
730.0
758.3
803.3 | 0.1
0.5
0.0
0.0
0.3
0.0
0.1
0.5
0.0
0.6
0.1
0.1
0.0
0.0 | ¹ Stream distance in feet above confluence with Doolin Creek | TAB | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |-------|-------------------------------------|-------------------------------|--|--|--| | 1 SLE | MENDOCINO COUNTY, CA | | | | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: GIBSON CREEK | | | | Table 23: Floodway Data (continued) | LOCAT | ΓΙΟΝ | | FLOODWAY | , | 1% ANNU | AL CHANCE FL
ELEVATION (FI | OOD WATER SU
EET NAVD88) | RFACE | |------------------|---|--|---|--|---|---|---|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | ABCDEFGHIJK | 1,140
1,240
1,990
2,700
3,085
5,485
8,220
10,600
12,640
14,610
17,270 | 30
30
90
80
85
50
40
80
70
45
45 | 279
180
471
422
260
242
205
300
156
165
149 | 7.9
12.3
4.7
5.2
8.5
9.1
6.0
4.1
7.9
7.4
8.2 | 620.6
620.6
624.6
626.5
629.7
642.8
658.1
675.8
697.8
716.3
740.7 | 616.8 ² 620.4 ² 624.6 626.5 629.7 642.8 658.1 675.8 697.8 716.3 740.7 | 617.3
620.4
625.0
627.4
629.7
642.9
658.7
676.6
698.0
716.4
741.4 | 0.5
0.0
0.4
0.9
0.0
0.1
0.6
0.8
0.2
0.1
0.7 | ¹ Feet above confluence with Russian River ² Elevation computed without consideration of backwater effects from Russian River | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|--------------------------------| | BLE | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: HENSLEY CREEK | Table 23: Floodway Data (continued) | LOCA | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | |------------------
---|--|--|---|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | ABCDEFGHIJKL | 420
1,330
2,000
2,650
2,930
3,790
4,900
6,000
8,100
11,190
12,620
14,910 | 30
40
40
40
55
50
55
70
85
65
50 | 248
276
249
263
308
337
441
420
508
767
385
387 | 5.8
12.8
14.2
13.5
11.5
10.5
8.0
8.4
7.0
4.6
7.8
7.7 | 797.2
805.8
883.5
909.8
916.2
934.8
947.0
954.5
968.6
990.2
1,003.2
1,024.7 | 797.2
805.8
883.5
909.8
916.2
934.8
947.0
954.5
968.6
990.2
1,003.2
1,024.7 | 797.2
805.8
883.7
909.9
916.7
935.6
947.8
955.4
969.3
990.9
1,003.2
1,025.1 | 0.0
0.2
0.1
0.5
0.8
0.9
0.7
0.7
0.0
0.4 | ¹ Feet above confluence with Forsythe Creek | ΤA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----|-------------------------------------|---| | | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: MILL CREEK (AT REDWOOD VALLEY) | Table 23: Floodway Data (continued) | LOCA | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | |-----------------------|---|--|---|---|---|---|---|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H I J K | 1,750
2,270
2,370
2,670
3,830
4,570
6,370
7,845
9,430
11,100
11,920 | 650
390
390
400
400
500
290
310
150
145
60 | 2,125
870
1,061
1,426
552
772
596
784
707
266
297 | 1.8
4.4
3.6
1.6
4.1
3.0
3.8
2.9
3.2
4.3
3.8 | 591.3
594.7
595.5
599.1
602.7
610.3
625.8
644.3
666.6
700.0
716.9 | 591.3
594.7
595.5
599.1
602.7
610.3
625.8
644.3
666.6
700.0
716.9 | 592.1
595.3
596.4
599.1
603.6
611.0
626.5
644.9
667.5
700.3
717.8 | 0.8
0.6
0.9
0.0
0.9
0.7
0.6
0.9
0.3
0.9 | ¹ Feet above confluence with Russian River ² Cross-section is shared with North Fork Mill Creek | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|--| | BLE | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: MILL CREEK (NEAR TALMAGE) | Table 23: Floodway Data (continued) | LOCA | LOCATION FLOODWAY | | , | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | RFACE | | |----------------------------|--|----------------------------------|--|--|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) ² | SECTION
AREA
(SQ. FEET) ² | MEAN
VELOCITY
(FEET/SEC) ² | REGULATORY | WITHOUT
FLOODWAY ³ | WITH
FLOODWAY ² | INCREASE | | A
B
C
D
E
F | 14,792
15,494
16,150
16,839
18,270
19,535 | 99
61
47
67
35
80 | 337
385
243
334
319
680 | 3.6
3.5
7.1
7.5
9.6
4.5 | 1,352.0
1,357.3
1,358.9
1,363.3
1,371.7
1,376.7 | 1,352.0
1,357.3
1,358.9
1,363.3
1,371.7
1,376.7 | 1,352.6
1,358.2
1,359.5
1,363.5
1,371.7
1,376.7 | 0.6
0.9
0.6
0.2
0.0
0.0 | ¹ Stream distance in feet above confluence with Baechtel Creek ² Values derived from the 1D/2D unsteady state floodway model for maximum water surface profile ³ Without Floodway' values are from the 1D/2D unsteady state base (100-Year) model for maximum water surface profile | ΑT | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|--| | BLE | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: MILL CREEK (AT WILLITS) | Table 23: Floodway Data (continued) | LOCA | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | |--------------------|-------------------------|-----------------|-------------------------------|--------------------------------|-------------------------|---|-------------------------|-------------------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A ² B C | 1,470
2,550
3,440 | 80
60
60 | 261
277
175 | 5.4
5.1
8.1 | 699.5
715.6
737.1 | 699.5
715.6
737.1 | 699.8
716.4
737.5 | 0.3
0.8
0.4 | | | | | | | | | | | Feet above confluence with Mill Creek (near Talmage) Cross-section shared with Mill Creek (near Talmage) | ٦⊼ | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|--| | BLE | MENDOCINO COUNTY, CALIFORNIA | 1 | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: NORTH FORK MILL CREEK | Table 23: Floodway Data (continued) | E ELEVATIO | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | FLOODWAY | | | LOCATION | | |------------|--|---------------------|------------|---------------------------------|-------------------------------|-----------------|-----------------------|------------------|--| | INCREAS | WITH
FLOODWAY | WITHOUT
FLOODWAY | REGULATORY | MEAN
VELOCITY
(FEET/ SEC) | SECTION
AREA
(SQ. FEET) | WIDTH
(FEET) | DISTANCE ¹ | CROSS
SECTION | | | 0.1 | 597.1 ² | 597.0 ² | 602.8 | 5.9 | 329 | 53 | 1,384 | Α | | | 0.6 | 600.9 ² | 600.3 ² | 602.8 | 5.4 | 333 | 60 | 2,144 | R | | | 0.2 | 602.6 ² | 602.4 ² | 603.4 | 7.8 | 271 | 44 | 2,765 | B
C | | | 0.5 | 607.1 | 606.6 | 606.6 | 4.5 | 393 | 49 | 3,130 | D | | | 0.0 | 607.9 | 607.9 | 607.9 | 3.4 | 606 | 91 | 3,471 | E | | | 0.2 | 609.5 | 609.3 | 609.3 | 8.0 | 329 | 46 | 3,996 | F | | | 0.1 | 611.2 | 611.1 | 611.1 | 6.8 | 390 | 54 | 4,524 | G | | | 0.5 | 617.2 | 616.7 | 616.7 | 8.7 | 303 | 42 | 5,260 | Н | | | 0.2 | 619.3 | 619.1 | 619.1 | 2.7 | 1,013 | 86 | 5,587 | I | | | 0.1 | 620.4 | 620.3 | 620.3 | 8.1 | 326 | 53 | 6,084 | J | | | 0.0 | 626.6 | 626.6 | 626.6 | 5.6 | 469 | 66 | 6,679 | K | | | 0.0 | 627.4 | 627.4 | 627.4 | 5.3 | 466 | 75 | 7,093 | L | | | 0.1 | 628.3 | 628.2 | 628.2 | 6.0 | 343 | 70 | 7,694 | M | | | 0.0 | 632.5 | 632.5 | 632.5 | 7.4 | 357 | 50 | 8,199 | N | | | 0.1 | 635.0 | 634.9 | 634.9 | 5.8 | 483 | 53 | 8,631 | Ο | | | 0.5 | 639.0 | 638.5 | 638.5 | 5.9 | 495 | 55 | 9,314 | Р | | | 0.7 | 641.7 | 641.0 | 641.0 | 7.3 | 386 | 47 | 10,064 | Q | | | 0.0 | 644.6 | 644.6 | 644.6 | 11.1 | 254 | 53 | 10,802 | R | | | 0.5 | 648.4 | 647.9 | 647.9 | 11.2 | 253 | 43 | 11,368 | S | | | 0.7 | 651.9 | 651.2 | 651.2 | 5.7 | 498 | 86 | 12,097 | Т | | | 0.0 | 656.8 | 656.8 | 656.8 | 7.5 | 377 | 161 | 12,812 | U | | | 0.0 | 659.1 | 659.1 | 659.1 | 7.3 | 387 | 160 | 13,248 | V | | | 0.0 | 664.8 | 664.8 | 664.8 | 4.2 | 671 | 80 | 13,554 | W | | | 0.1 | 670.0 | 669.9 | 669.9 | 6.0 | 469 | 44 | 14,041 | X | | | 0.0 | 673.4 | 673.4 | 673.4 | 13.0 | 199 | 37 | 14,641 | Y | | | 0.4 | 682.7 | 682.3 | 682.3 | 10.7 | 244 | 24 | 15,257 | Z | | ¹ Stream distance in feet above confluence with Russian River FEDERAL EMERGENCY MANAGEMENT AGENCY MENDOCINO COUNTY, CA AND INCORPORATED AREAS FLOODING SOURCE: ORRS CREEK ² Elevation computed without consideration of backwater effects from Russian River Table 24: Floodway Data (Continued) | LOCA | LOCATION FLOODWAY | | , | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | | |---------------------|--|---
--|---|--|--|--|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H I J | 2,525
4,760
6,635
8,800
11,890
15,630
18,160
23,780
26,750
29,480 | 450
240
160
140
110
70
65
85
85
60 | 2,478
1,551
1,108
1,264
1,010
690
582
429
372
379 | 2.7
4.3
5.9
5.2
6.5
8.2
9.8
11.1
8.7
8.5 | 577.2
583.6
588.7
603.2
617.5
642.7
665.7
781.1
864.3
886.3 | 577.2
583.6
588.7
603.2
617.5
642.7
665.7
781.1
864.3
886.3 | 578.2
584.5
589.6
604.1
618.4
642.9
666.1
781.2
865.0
886.8 | 1.0
0.9
0.9
0.9
0.2
0.4
0.1
0.7
0.5 | ¹ Feet above confluence with Russian River | TAB | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | |-----|-------------------------------------|---------------------------------|--|--| | E | MENDOCINO COUNTY, CALIFORNIA | | | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: ROBINSON CREEK | | | Table 23: Floodway Data (continued) | LOCA | TION | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | |-----------------------|-----------------------|-----------------|-------------------------------|--------------------------------|--|---------------------|------------------|----------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | А | 0 | 1,000 | 23,315 | 2.4 | 495.6 | 495.6 | 496.4 | 0.8 | | | 2,165 | 2,000 | 35,767 | 1.7 | 496.8 | 496.8 | 497.7 | 0.9 | | C | 3,820 | 2,700 | 34,964 | 1.7 | 497.5 | 497.5 | 498.4 | 0.9 | | D | 6,850 | 3,100 | 32,407 | 1.6 | 498.7 | 498.7 | 499.6 | 0.9 | | B
C
D
E
F | 10,390 | 2,800 | 24,445 | 2.2 | 499.4 | 499.4 | 500.4 | 1.0 | | F | 11,820 | 2,800 | 29,358 | 1.8 | 500.1 | 500.1 | 501.0 | 0.9 | | G | 14,635 | 2,900 | 20,969 | 2.5 | 501.0 | 501.0 | 501.9 | 0.9 | | Н | 16,700 | 2,900 | 21,330 | 2.5 | 502.6 | 502.6 | 503.5 | 0.9 | | I | 19,810 | 1,850 | 17,274 | 3.1 | 505.6 | 505.6 | 506.5 | 0.9 | | J | 22,910 | 770 | 9,369 | 5.7 | 508.0 | 508.0 | 508.6 | 0.6 | | K | 25,230 | 480 | 5,599 | 9.5 | 511.2 | 511.2 | 512.1 | 0.9 | | L | 28,300 | 880 | 9,124 | 5.8 | 518.2 | 518.2 | 518.7 | 0.5 | | M | 30,645 | 560 | 7,835 | 6.8 | 522.7 | 522.7 | 523.5 | 0.8 | | N | 33,495 | 400 | 6,709 | 7.2 | 528.0 | 528.0 | 528.9 | 0.9 | | 0 | 35,800 | 450 | 9,233 | 5.3 | 533.3 | 533.3 | 533.6 | 0.3 | | Р | 37,665 | 1,570 | 18,561 | 2.6 | 535.6 | 535.6 | 535.9 | 0.3 | | Q | 40,450 | 390 | 3,876 | 12.5 | 535.6 | 535.6 | 535.9 | 0.3 | | R | 42,820 | 430 | 9,174 | 5.3 | 544.0 | 544.0 | 545.0 | 1.0 | | S
T | 45,310 | 400 | 8,619 | 5.6 | 546.7 | 546.7 | 547.5 | 0.8 | | | 48,460 | 900 | 14,421 | 3.4 | 550.3 | 550.3 | 551.0 | 0.7 | | U | 51,250 | 1,300 | 14,328 | 3.4 | 552.7 | 552.7 | 553.2 | 0.5 | | V | 53,860 | 1,320 | 12,439 | 3.9 | 555.5 | 555.5 | 556.0 | 0.5 | | W | 56,770 | 1,000 | 11,529 | 4.2 | 558.7 | 558.7 | 559.3 | 0.6 | | X | 59,350 | 1,780 | 14,876 | 2.8 | 561.6 | 561.6 | 562.2 | 0.6 | | Y | 62,815 | 2,090 | 19,443 | 2.2 | 564.0 | 564.0 | 564.7 | 0.7 | | Z | 67,360 | 1,970 | 13,860 | 3.0 | 566.6 | 566.6 | 567.4 | 0.8 | ¹ Feet above 50 feet downstream of U.S. Highway 101 | ΤA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----|-------------------------------------|--------------------------------| | BE | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: RUSSIAN RIVER | Table 23: Floodway Data (continued) | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |------------------|-----------------------|-----------------|-------------------------------|--------------------------------|---|---------------------|------------------|---------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREAS | | AA | 71,400 | 2,260 | 20,590 | 1.8 | 572.4 | 572.4 | 573.3 | 0.9 | | AB | 75,150 | 2,980 | 21,124 | 1.8 | 577.1 | 577.1 | 578.0 | 0.9 | | AC | 78,980 | 3,625 | 23,151 | 1.6 | 582.2 | 582.2 | 583.2 | 1.0 | | AD | 81,925 | 2,500 | 27,836 | 1.3 | 584.8 | 584.8 | 585.6 | 0.8 | | AE | 90,730 | 1,800 | 12,150 | 2.6 | 595.3 | 595.3 | 596.2 | 0.9 | | AF | 93,020 | 1,600 | 11,635 | 2.7 | 598.5 | 598.5 | 599.1 | 0.6 | | AG | 98,720 | 1,000 | 14,564 | 5.4 | 604.8 | 604.8 | 605.8 | 1.0 | | AH | 102,205 | 400 | 3,837 | 7.7 | 608.9 | 608.9 | 609.8 | 0.9 | | Al | 104,625 | 400 | 5,594 | 4.8 | 616.4 | 616.4 | 616.6 | 0.2 | | AJ | 106,950 | 500 | 5,955 | 4.0 | 619.8 | 619.8 | 620.5 | 0.7 | | AK | 108,795 | 700 | 6,694 | 3.3 | 623.3 | 623.3 | 624.0 | 0.7 | | AL | 111,715 | 258 | 3,913 | 5.5 | 630.2 | 630.2 | 630.7 | 0.5 | | AM | 113,500 | 385 | 4,574 | 4.7 | 634.6 | 634.6 | 635.5 | 0.9 | | AN | 117,640 | 466 | 6,173 | 3.1 | 642.1 | 642.1 | 642.6 | 0.5 | | AO | 119,850 | 350 | 4,681 | 4.1 | 647.4 | 647.4 | 648.1 | 0.7 | | AP | 123,575 | 210 | 3,005 | 6.4 | 656.4 | 656.4 | 656.9 | 0.5 | | AQ | 126,100 | 360 | 5,722 | 3.4 | 661.0 | 661.0 | 661.9 | 0.9 | | AR | 127,595 | 200 | 2,406 | 8.0 | 663.7 | 663.7 | 664.6 | 0.9 | | AS | 129,620 | 150 | 2,478 | 7.7 | 671.7 | 671.7 | 671.8 | 0.1 | | AT | 131,615 | 150 | 2,914 | 6.6 | 678.2 | 678.2 | 678.8 | 0.6 | | AU | 133,780 | 350 | 3,203 | 6.0 | 682.6 | 682.6 | 683.1 | 0.5 | | AV | 135,880 | 420 | 3,637 | 2.3 | 692.2 | 692.2 | 692.6 | 0.4 | | AW | 138,300 | 140 | 1,760 | 4.0 | 695.6 | 695.6 | 696.4 | 0.8 | | AX | 140,955 | 100 | 1,295 | 5.5 | 708.9 | 708.9 | 709.3 | 0.4 | | AY | 142,250 | 200 | 1,803 | 3.9 | 713.5 | 713.5 | 714.1 | 0.6 | ¹ Feet above 50 feet downstream of U.S. Highway 101 | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|--------------------------------| | BLE | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: RUSSIAN RIVER | Table 23: Floodway Data (continued) | LOCA | LOCATION | | FLOODWAY | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |------------------|---|--|--|---|--|--|--|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | ABCDEFGHIJKLMNOP | 7,636
7,756
8,060
8,168
8,354
8,447
8,470
8,963
9,355
9,634
9,842
9,858
9,954
10,029
10,212
10,307 | 78
94
50
57
59
62
60
68
53
47
46
46
59
38
51
71 | 373
335
206
239
257
179
210
175
160
197
168
154
168
249
159
179 | 4.3
4.8
7.8
6.7
6.2
9.0
7.0
9.1
10.0
8.1
9.5
10.4
9.5
6.4
10.1
9.0 | 725.2
725.8
729.3
730.3
734.0
734.5
735.4
746.9
753.4
759.2
761.3
763.9
768.5
773.8
775.4
777.7 | 725.2
725.8
729.3
730.3
734.0
734.5
735.4
746.9
753.4
759.2
761.3
763.9
768.5
773.8
775.4
777.7 | 726.1
726.4
730.2
731.3
734.1
734.8
735.6
746.9
753.6
759.7
761.6
763.9
768.5
773.8
775.4
777.7 | 0.9
0.6
0.9
1.0
0.1
0.3
0.2
0.0
0.2
0.5
0.3
0.0
0.0
0.0
0.0 | ¹ Feet above confluence with Russian River | ΤA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----|-------------------------------------|--------------------------------| | BE | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: SULPHUR CREEK | Table 23: Floodway Data (continued) | LOCAT | LOCATION FLOODWAY | | | ELEVATION (FEET NAVD88) | | | | | RFACE | |-----------------------|---------------------------------------|---------------------------------|---|---------------------------------|---|---|---|--------------------------|-------| | CROSS
SECTION | DISTANCE1 | WIDTH
(FEET) |
SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | A
B
C
D
E | 565
895
2,855
4,210
5,020 | 400
300
250
270
300 | 2,088
1,610
1,678
1,799
2,795 | 3.3
4.3
4.1
3.8
2.5 | 1,610.9
1,612.0
1,617.5
1,619.6
1,620.3 | 1,610.9
1,612.0
1,617.5
1,619.6
1,620.3 | 1,611.8
1,612.6
1,618.1
1,620.4
1,621.2 | 0.9
0.6
0.8
0.9 | | ¹ Feet above 0.2 miles downstream of Branscomb Road | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|--------------------------------| | BLE | MENDOCINO COUNTY, CALIFORNIA | | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: TENMILE CREEK | Table 23: Floodway Data (continued) | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | RFACE | |-----------------------|---|--------------------------------|---------------------------------|---------------------------------|---|---|---|---------------------------------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A
B
C
D
E | 240
1,085
2,750
4,185
5,140 | 200
200
55
145
100 | 955
740
445
920
595 | 2.9
3.7
6.0
3.0
4.6 | 1,382.3
1,387.8
1,397.1
1,402.1
1,406.9 | 1,382.3
1,387.8
1,397.1
1,402.1
1,406.9 | 1,383.0
1,388.5
1,397.4
1,402.7
1,407.5 | 0.7
0.7
0.8
0.6
0.6 | ¹ Feet above confluence with Grist Creek | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|-----------------------------| | BLE | MENDOCINO COUNTY, CALIFORNIA | 1 2 3 2 11111 211111 | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: TOWN CREEK | Table 23: Floodway Data (continued) | LOCAT | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFAC
ELEVATION (FEET NAVD88) | | RFACE | |------------------|---|--|--|--|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H | 620
685
1,655
3,300
4,700
7,225
9,925
12,955 | 55
55
80
120
70
90
110
90 | 474
590
673
968
513
587
665
619 | 6.9
5.6
4.9
3.4
6.4
5.6
3.6
3.9 | 639.2
639.3
641.5
645.1
650.7
664.4
680.2
698.7 | 634.9 ²
635.1 ²
641.5
645.1
650.7
664.4
680.2
698.7 | 635.3
636.1
642.5
646.0
650.9
664.8
680.9
699.4 | 0.4
1.0
1.0
0.9
0.2
0.4
0.7
0.7 | ¹ Feet above confluence with Russian River ² Elevation computed without consideration of backwater effects from Russian River | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|-----------------------------| | BLE | MENDOCINO COUNTY, CALIFORNIA | . 2002 11111 211111 | | 23 | AND INCORPORATED AREAS | FLOODING SOURCE: YORK CREEK | Non-encroachment areas may be delineated where it is not possible to delineate floodways because specific channel profiles with bridge and culvert geometry were not developed. Any non-encroachment determinations for this Flood Risk Project have been tabulated for selected cross sections and are shown in Table 24. The non-encroachment width indicates the measured distance left and right (looking downstream) from the mapped center of the stream to the non-encroachment boundary based on a surcharge of 1.0 foot or less. # Table 24: Flood Hazard and Non-Encroachment Data for Selected Streams [Not Applicable to this Flood Risk Project] ## 6.4 Coastal Flood Hazard Mapping Flood insurance zones and BFEs including the wave effects were identified on each transect based on the results from the onshore wave hazard analyses. Between transects, elevations were interpolated using topographic maps, land-use and land-cover data, and knowledge of coastal flood processes to determine the aerial extent of flooding. Sources for topographic data are shown in Table 22. Zone VE is subdivided into elevation zones and BFEs are provided on the FIRM. The limit of Zone VE shown on the FIRM is defined as the farthest inland extent of any of these criteria (determined for the 1-percent-annual-chance flood condition): - The primary frontal dune zone is defined in 44 CFR Section 59.1 of the NFIP regulations. The primary frontal dune represents a continuous or nearly continuous mound or ridge of sand with relatively steep seaward and landward slopes that occur immediately landward and adjacent to the beach. The primary frontal dune zone is subject to erosion and overtopping from high tides and waves during major coastal storms. The inland limit of the primary frontal dune zone occurs at the point where there is a distinct change from a relatively steep slope to a relatively mild slope. - The wave runup zone occurs where the (eroded) ground profile is 3.0 feet or more below the 2-percent wave runup elevation. - The wave overtopping splash zone is the area landward of the crest of an overtopped barrier, in cases where the potential 2-percent wave runup exceeds the barrier crest elevation by 3.0 feet or more. - The *breaking wave height zone* occurs where 3-foot or greater wave heights could occur (this is the area where the wave crest profile is 2.1 feet or more above the total stillwater elevation). - The high-velocity flow zone is landward of the overtopping splash zone (or area on a sloping beach or other shore type), where the product of depth of flow times the flow velocity squared (hv²) is greater than or equal to 200 ft³/sec². This zone may only be used on the Pacific Coast. The SFHA boundary indicates the limit of SFHAs shown on the FIRM as either "V" zones or "A" zones. Table 25 indicates the coastal analyses used for floodplain mapping and the criteria used to determine the inland limit of the open-coast Zone VE and the SFHA boundary at each transect. **Table 25: Summary of Coastal Transect Mapping Considerations** | | | Wave Runup
Analysis | Wave Height
Analysis | | | |----------|-----------------------|------------------------|-------------------------|---------|-------------| | | Primary | Zone | Zone | | | | Coastal | Frontal Dune
(PFD) | Designation
and BFE | Designation
and BFE | Zone VE | SFHA | | Transect | Identified | (ft NAVD88) | (ft NAVD88) | Limit | Boundary | | 1 | | VE 44 | VE 44 | Runup | | | 2 | | VE 21 | VE 21 | Runup | | | 3 | | VE 37 | VE 37 | Runup | Overtopping | | 4 | | VE 36 | VE 36 | Runup | | | 5 | | VE 34 | VE 34 | Runup | Overtopping | | 6 | | VE 18 | VE 18 | Runup | | | 7 | | VE 32 | VE 32 | Runup | | | 8 | | VE 24 | VE 24 | Runup | Overtopping | | 9 | | VE 24 | VE 24 | Runup | | | 10 | | VE 36 | VE 36 | Runup | | | 11 | | VE 32 | VE 32 | Runup | | | 12 | | VE 22 | VE 22 | Runup | Overtopping | | 13 | | VE 33 | VE 33 | Runup | | | 14 | | VE 21 | VE 21 | Runup | | | 15 | | VE 22 | VE 22 | Runup | | | 16 | | VE 23 | VE 23 | Runup | | | 17 | | VE 23 | VE 23 | Runup | Overtopping | | 18 | | VE 23 | VE 23 | Runup | | | 19 | ✓ | VE 23 | VE 23 | PFD | | | 20 | | VE 19 | VE 19 | Runup | | | 21 | | VE 21 | VE 21 | Runup | | | 22 | | VE 25 | VE 25 | Runup | | | 23 | | VE 31 | VE 31 | Runup | | | 24 | | VE 48 | VE 48 | Runup | Overtopping | | 25 | | VE 29 | VE 29 | Runup | | | 26 | | VE 35 | VE 35 | Runup | | | 27 | | VE 31 | VE 31 | Runup | Overtopping | Table 25: Summary of Coastal Transect Mapping Considerations (continued) | | | Wave Runup
Analysis | Wave Height Analysis | | | |----------|-------------------------|------------------------|----------------------|---------|-------------| | | Primary
Frontal Dune | Zone
Designation | Zone
Designation | | | | Coastal | (PFD) | and BFE | and BFE | Zone VE | SFHA | | Transect | Identified | (ft NAVD88) | (ft NAVD88) | Limit | Boundary | | 28 | | VE 35 | VE 35 | Runup | | | 29 | | VE 40 | VE 40 | Runup | | | 30 | | VE 19 | VE 19 | Runup | | | 31 | | VE 40 | VE 40 | Runup | | | 32 | | VE 36 | VE 36 | Runup | | | 33 | | VE 18 | VE 18 | Runup | Overtopping | | 34 | | VE 30 | VE 30 | Runup | | | 35 | | VE 50 | VE 50 | Runup | Overtopping | | 36 | | VE 33 | VE 33 | Runup | | | 37 | | VE 34 | VE 34 | Runup | Overtopping | | 38 | | VE 42 | VE 42 | Runup | | | 39 | | VE 49 | VE 49 | Runup | Overtopping | | 40 | | VE 52 | VE 52 | Runup | | | 41 | | VE 27 | VE 27 | Runup | | | 42 | | VE 28 | VE 28 | Runup | | | 43 | | VE 55 | VE 55 | Runup | Overtopping | | 44 | | VE 31 | VE 31 | Runup | | | 45 | | VE 19 | VE 19 | Runup | Overtopping | | 46 | | VE 27 | VE 27 | Runup | | | 47 | | VE 41 | VE 41 | Runup | | | 48 | | VE 21 | VE 21 | Runup | | | 49 | | VE 50 | VE 50 | Runup | | | 50 | | VE 24 | VE 24 | Runup | | | 51 | | VE 19 | VE 19 | Runup | Overtopping | | 52 | | VE 26 | VE 26 | Runup | | | 53 | | VE 41 | VE 41 | Runup | | | 54 | | VE 32 | VE 32 | Runup | Overtopping | | 55 | | VE 20 | VE 20 | Runup | Overtopping | | 56 | | VE 30 | VE 30 | Runup | 3 | | 57 | | VE 19 | VE 19 | Runup
| | | 58 | ✓ | VE 18 | VE 18 | PFD | | | 59 | | VE 32 | VE 32 | Runup | | | | | | | | <u> </u> | **Table 25: Summary of Coastal Transect Mapping Considerations (***continued***)** | Coastal
Transect | Primary
Frontal Dune
(PFD)
Identified | Wave Runup Analysis Zone Designation and BFE (ft NAVD88) | Wave Height Analysis Zone Designation and BFE (ft NAVD88) | Zone VE
Limit | SFHA
Boundary | |---------------------|--|--|---|------------------|------------------| | 60 | | VE 32 | VE 32 | Runup | Overtopping | | 61 | | VE 31 | VE 31 | Runup | | | 62 | | VE 24 | VE 24 | Runup | | | 63 | | VE 22 | VE 22 | Runup | | | 64 | | VE 23 | VE 23 | Runup | | | 65 | | VE 29 | VE 29 | Runup | | | 66 | | VE 36 | VE 36 | Runup | | | 67 | | VE 30 | VE 30 | Runup | | | 68 | | VE 33 | VE 33 | Runup | | #### 6.5 FIRM Revisions This FIS Report and the FIRM are based on the most up-to-date information available to FEMA at the time of its publication; however, flood hazard conditions change over time. Communities or private parties may request flood map revisions at any time. Certain types of requests require submission of supporting data. FEMA may also initiate a revision. Revisions may take several forms, including Letters of Map Amendment (LOMAs), Letters of Map Revision Based on Fill (LOMR-Fs), Letters of Map Revision (LOMRs) (referred to collectively as Letters of Map Change (LOMCs)), Physical Map Revisions (PMRs), and FEMA-contracted restudies. These types of revisions are further described below. Some of these types of revisions do not result in the republishing of the FIS Report. To assure that any user is aware of all revisions, it is advisable to contact the community repository of flood-hazard data (shown in Table 30, "Map Repositories"). ### 6.5.1 Letters of Map Amendment A LOMA is an official revision by letter to an effective NFIP map. A LOMA results from an administrative process that involves the review of scientific or technical data submitted by the owner or lessee of property who believes the property has incorrectly been included in a designated SFHA. A LOMA amends the currently effective FEMA map and establishes that a specific property is not located in a SFHA. A LOMA cannot be issued for properties located on the PFD (primary frontal dune). To obtain an application for a LOMA, visit www.fema.gov/flood-maps/change-your-flood-zone and download the form "MT-1 Application Forms and Instructions for Conditional and Final Letters of Map Amendment and Letters of Map Revision Based on Fill". Visit the "Flood Map-Related Fees" section to determine the cost, if any, of applying for a LOMA. FEMA offers a tutorial on how to apply for a LOMA. The LOMA Tutorial Series can be accessed at www.fema.gov/flood-maps/tutorials. For more information about how to apply for a LOMA, call the FEMA Mapping and Insurance eXchange; toll free, at 1-877-FEMA MAP (1-877-336-2627). ## 6.5.2 Letters of Map Revision Based on Fill A LOMR-F is an official revision by letter to an effective NFIP map. A LOMR-F states FEMA's determination concerning whether a structure or parcel has been elevated on fill above the base flood elevation and is, therefore, excluded from the SFHA. Information about obtaining an application for a LOMR-F can be obtained in the same manner as that for a LOMA, by visiting www.fema.gov/flood-maps/change-your-flood-zone for the "MT-1 Application Forms and Instructions for Conditional and Final Letters of Map Amendment and Letters of Map Revision Based on Fill" or by calling the FEMA Mapping and Insurance eXchange, toll free, at 1-877-FEMA MAP (1-877-336-2627). Fees for applying for a LOMR-F, if any, are listed in the "Flood Map-Related Fees" section. A tutorial for LOMR-F is available at www.fema.gov/flood-maps/tutorials. ## 6.5.3 Letters of Map Revision A LOMR is an official revision to the currently effective FEMA map. It is used to change flood zones, floodplain and floodway delineations, flood elevations and planimetric features. All requests for LOMRs should be made to FEMA through the chief executive officer of the community, since it is the community that must adopt any changes and revisions to the map. If the request for a LOMR is not submitted through the chief executive officer of the community, evidence must be submitted that the community has been notified of the request. To obtain an application for a LOMR, visit www.fema.gov/flood-maps/change-your-flood-zone and download the form "MT-2 Application Forms and Instructions for Conditional Letters of Map Revision and Letters of Map Revision". Visit the "Flood Map-Related Fees" section to determine the cost of applying for a LOMR. For more information about how to apply for a LOMR, call the FEMA Mapping and Insurance eXchange; toll free, at 1-877-FEMA MAP (1-877-336-2627) to speak to a Map Specialist. Previously issued mappable LOMCs (including LOMRs) that have been incorporated into the Mendocino County FIRM are listed in Table 26. Please note that this table only includes LOMCs that have been issued on the FIRM panels updated by this map revision. For all other areas within this county, users should be aware that revisions to the FIS Report made by prior LOMRs may not be reflected herein and users will need to continue to use the previously issued LOMRs to obtain the most current data. # Table 26: Incorporated Letters of Map Change [Not Applicable to this Flood Risk Project] ## 6.5.4 Physical Map Revisions A Physical Map Revisions (PMR) is an official republication of a community's NFIP map to effect changes to base flood elevations, floodplain boundary delineations, regulatory floodways and planimetric features. These changes typically occur as a result of structural works or improvements, annexations resulting in additional flood hazard areas or correction to base flood elevations or SFHAs. The community's chief executive officer must submit scientific and technical data to FEMA to support the request for a PMR. The data will be analyzed and the map will be revised if warranted. The community is provided with copies of the revised information and is afforded a review period. When the base flood elevations are changed, a 90-day appeal period is provided. A 6-month adoption period for formal approval of the revised map(s) is also provided. For more information about the PMR process, please visit www.fema.gov and visit the Floods & Maps "Change Your Flood Zone Designation" section. #### 6.5.5 Contracted Restudies The NFIP provides for a periodic review and restudy of flood hazards within a given community. FEMA accomplishes this through a national watershed-based mapping needs assessment strategy, known as the Coordinated Needs Management Strategy (CNMS). The CNMS is used by FEMA to assign priorities and allocate funding for new flood hazard analyses used to update the FIS Report and FIRM. The goal of CNMS is to define the validity of the engineering study data within a mapped inventory. The CNMS is used to track the assessment process, document engineering gaps and their resolution, and aid in prioritization for using flood risk as a key factor for areas identified for flood map updates. Visit www.fema.gov to learn more about the CNMS or contact the FEMA Regional Office listed in Section 8 of this FIS Report. # 6.5.6 Community Map History The current FIRM presents flooding information for the entire geographic area of Mendocino County. Previously, separate FIRMs, Flood Hazard Boundary Maps (FHBMs) and/or Flood Boundary and Floodway Maps (FBFMs) may have been prepared for the incorporated communities and the unincorporated areas in the county that had identified SFHAs. Current and historical data relating to the maps prepared for the project area are presented in Table 27, "Community Map History." A description of each of the column headings and the source of the date is also listed below. - Community Name includes communities falling within the geographic area shown on the FIRM, including those that fall on the boundary line, nonparticipating communities, and communities with maps that have been rescinded. Communities with No Special Flood Hazards are indicated by a footnote. If all maps (FHBM, FBFM, and FIRM) were rescinded for a community, it is not listed in this table unless SFHAs have been identified in this community. - Initial Identification Date (First NFIP Map Published) is the date of the first NFIP map that identified flood hazards in the community. If the FHBM has been converted to a FIRM, the initial FHBM date is shown. If the community has never been mapped, the upcoming effective date or "pending" (for Preliminary FIS Reports) is shown. If the community is listed in Table 27 but not identified on the map, the community is treated as if it were unmapped. - *Initial FHBM Effective Date* is the effective date of the first FHBM. This date may be the same date as the Initial NFIP Map Date. - FHBM Revision Date(s) is the date(s) that the FHBM was revised, if applicable. - Initial FIRM Effective Date is the date of the first effective FIRM for the community. - FIRM Revision Date(s) is the date(s) the FIRM was revised, if applicable. This is the revised date that is shown on the FIRM panel, if applicable. As countywide studies are completed or revised, each community listed should have its FIRM dates updated accordingly to reflect the date of the countywide study. Once the FIRMs exist in countywide format, as PMRs of FIRM panels within the county are completed, the
FIRM Revision Dates in the table for each community affected by the PMR are updated with the date of the PMR, even if the PMR did not revise all the panels within that community. The initial effective date for the Mendocino County FIRMs in countywide format was 06/02/2011. **Table 27: Community Map History** | Community Name | Initial
Identification
Date | Initial
FHBM
Effective
Date | FHBM
Revision
Date(s) | Initial FIRM
Effective
Date | FIRM
Revision
Date(s) | |---|-----------------------------------|--------------------------------------|--|-----------------------------------|--| | Fort Bragg, City of | 05/10/1975 | 05/10/1975 | 10/03/1975 | 12/07/1982 | 07/18/2017
06/02/2011
06/16/1992 | | Mendocino
County,
Unincorporated
Areas | 01/03/1974 | 01/03/1974 | 04/25/1978 | 06/01/1983 | 09/19/2025
09/01/2022
07/18/2017
06/02/2011
06/16/1992
09/30/1988
06/03/1986 | | Pinoleville Pomo
Nation ¹ | 06/02/2011 | N/A | N/A | 06/02/2011 | 09/19/2025 | | Point Arena, City of | 10/18/1974 | 10/18/1974 | 12/26/1975 | 08/03/1984 | 07/18/2017
06/02/2011
06/03/1986 | | Ukiah, City of | 08/09/1974 | 08/09/1974 | 06/06/1978
01/03/1978
09/17/1976 | 07/19/1982 | 09/19/2025
06/02/2011
08/05/1985 | | Willits, City of | 02/08/1974 | 02/08/1974 | 07/30/1976 | 07/19/1982 | 09/01/2022
06/02/2011
09/30/1988 | ¹ This community did not have a FIRM prior to the first countywide FIRM for Mendocino County # **SECTION 7.0 – CONTRACTED STUDIES AND COMMUNITY COORDINATION** # 7.1 Contracted Studies Table 28 provides a summary of the contracted studies, by flooding source, that are included in this FIS Report. Table 28: Summary of Contracted Studies Included in this FIS Report | Flooding
Source | FIS
Report
Dated | Contractor | Number | Work
Completed
Date | Affected
Communities | |-----------------------------------|------------------------|--|----------------------|---------------------------|--| | Ackerman
Creek
(Zone AE) | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas;
Pinoleville
Pomo Nation | | Ackerman
Creek
(Zone A) | 09/19/2025 | STARR II | HSFE60-17-
J-0008 | July 2019 | Mendocino
County,
Unincorporated
Areas | | Anderson
Creek | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Baechtel Creek | 09/01/2022 | STARR II | HSFE60-15-
0005 | January 2017 | Mendocino
County,
Unincorporated
Areas; Willits,
City of | | Baechtel Creek
East Overflow 1 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas | Table 28: Summary of Contracted Studies Included in this FIS Report (continued) | Flooding
Source | FIS
Report
Dated | Contractor | Number | Work
Completed
Date | Affected
Communities | |-----------------------------------|------------------------|------------|--------------------|---------------------------|--| | Baechtel Creek
East Overflow 2 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas | | Baechtel Creek
East Overflow 3 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas | | Baechtel Creek
East Overflow 4 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas; Willits,
City of | | Baechtel Creek
East Overflow 5 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas | | Baechtel Creek
East Overflow 6 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas | | Baechtel Creek
East Overflow 7 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas; Willits, City
of | | Baechtel Creek
East Overflow 8 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Baechtel Creek
East Overflow 9 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Baechtel Creek
West Overflow 1 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | Table 28: Summary of Contracted Studies Included in this FIS Report (continued) | Flooding
Source | FIS
Report
Dated | Contractor | Number | Work
Completed
Date | Affected
Communities | |---|------------------------|------------|--------------------|---------------------------|---| | Baechtel Creek
West Overflow 2 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas; Willits, City
of | | Baechtel Creek
West Overflow 3 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas; Willits, City
of | | Baechtel Creek
West Overflow 4 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas; Willits, City
of | | Baechtel Creek
West Overflow 5 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Baechtel Creek
West Overflow 6 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Baechtel Creek
West Overflow 7 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Baechtel Creek
West Overflow 8 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Berry Creek | 09/01/2022 | STARR II | HSFE60-15-
0005 | January 2017 | Mendocino
County,
Unincorporated
Areas | | Big / Navarro /
Garcia Rivers
Watershed
(Zone A) | N/A | N/A | N/A | N/A | Fort Bragg, City
of; Mendocino
County,
Unincorporated
Areas;
Point Arena,
City of | Table 28: Summary of Contracted Studies Included in this FIS Report (continued) | Flooding
Source | FIS Report
Dated | Contractor | Number | Work
Completed
Date | Affected
Communities | |--------------------------------------|---------------------|--|----------------------|---------------------------|--| | Broaddus
Creek | 09/01/2022 | STARR II | HSFE60-15-
0005 | January 2017 | Willits, City of | | Broaddus
Creek East
Overflow 1 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Broaddus
Creek East
Overflow 2 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Davis Creek | 09/01/2022 | STARR II | HSFE60-15-
0005 | January 2017 | Mendocino
County,
Unincorporated
Areas | | Doolin Creek (Zone A) | 09/19/2025 | STARR II | HSFE60-17-
J-0008 | July 2019 | Mendocino
County,
Unincorporated
Areas | | Doolin Creek
(Zone AE) | 09/19/2025 | STARR II | HSFE60-15-
0005 | April 2021 | Mendocino
County,
Unincorporated
Areas;
Ukiah, City of | | East Fork
Russian River | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Eel River | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Feliz Creek | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Forsythe Creek | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Gibson Creek
(Zone A) | 09/19/2025 | STARR II | HSFE60-17-
J-0008 | July 2019 | Mendocino
County,
Unincorporated
Areas; Ukiah,
City of | | Gibson Creek
(Zone AE) | 09/19/2025 | STARR II | HSFE60-15-
0005 | February
2024 | Mendocino
County,
Unincorporated
Areas; Ukiah,
City of | Table 28: Summary of Contracted Studies Included in this FIS Report (continued) | | | | | 100 | | |---|---------------------|--|----------------------|---------------------------|--| | Flooding
Source | FIS Report
Dated | Contractor | Number | Work
Completed
Date | Affected
Communities | | Gualala River | 09/30/1988 | Ott Water
Engineers,
Inc. | EMW-83-C-
1175 | August
1984 | Mendocino
County,
Unincorporated
Areas | | Gualala /
Salmon Rivers
Watershed
(Zone A) | N/A | N/A | N/A | N/A | Mendocino
County,
Unincorporated
Areas | | Haehl Creek | 09/01/2022 | STARR II | HSFE60-15-
0005 | January 2017 | Mendocino
County,
Unincorporated
Areas; Willits,
City of | | Hensley Creek | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Howard Creek | 09/19/2025 | STARR II | HSFE60-17-
J-0008 | July 2019 | Mendocino
County,
Unincorporated
Areas | | Lower Eel
River
Watershed
(Zone A) | N/A | N/A | N/A | N/A | Mendocino
County,
Unincorporated
Areas | | Mattole River
Watershed
(Zone A) | N/A | N/A | N/A | N/A | Mendocino
County,
Unincorporated
Areas | | McClure Creek | 09/19/2025 | STARR II |
HSFE60-17-
J-0008 | July 2019 | Mendocino
County,
Unincorporated
Areas | | Middle Fork
Eel River
Watershed
(Zone A) | N/A | N/A | N/A | N/A | Mendocino
County,
Unincorporated
Areas | | Mill Creek
(at Redwood
Valley | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Mill Creek
(at Willits) | 09/01/2022 | STARR II | HSFE60-15-
0005 | January 2017 | Willits, City of | | Mill Creek (At
Wilts) East
Overflow 1 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Mill Creek (At
Wilts) East
Overflow 2 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | Table 28: Summary of Contracted Studies Included in this FIS Report (continued) | Flooding | FIS Report | 0 1 1 | | Work
Completed | Affected | |---|------------|------------|--------------------|-------------------|--| | Source | Dated | Contractor | Number | Date | Communities | | Mill Creek (At
Wilts) East
Overflow 3 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Mill Creek (At
Wilts) East
Overflow 4 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Mill Creek (At
Wilts) East
Overflow 5 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Mill Creek (At
Wilts) East
Overflow 6 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Mill Creek (At
Wilts) East
Overflow 7 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Mill Creek (At
Wilts) East
Overflow 8 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Mill Creek (At
Wilts) West
Overflow 1 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas; Willits, City
of | | Mill Creek (At
Wilts) West
Overflow 2 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Mendocino
County,
Unincorporated
Areas; Willits, City
of | | Mill Creek (At
Wilts) West
Overflow 3 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Mill Creek (At
Wilts) West
Overflow 4 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | Table 28: Summary of Contracted Studies Included in this FIS Report (continued) | Flooding
Source | FIS Report
Dated | Contractor | Number | Work
Completed
Date | Affected
Communities | |---|---------------------|---|--|---------------------------|---| | Mill Creek (At
Wilts) West
Overflow 5 | 09/01/2022 | STARR II | HSFE60-15-
0005 | May 2020 | Willits, City of | | Mill Creek
(near Talmage) | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | North Fork Mill
Creek | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Noyo River | 06/16/1992 | Philip
Williams &
Associates.
Ltd. | EMW-89-C-
2845 | January
1991 | Fort Bragg, City of; Mendocino County, Unincorporated Areas | | Orrs Creek
(Zone A) | 09/19/2025 | STARR II | HSFE60-17-
J-0008 | July 2019 | Mendocino
County,
Unincorporated
Areas; Ukiah,
City of | | Orrs Creek
(Zone AE) | 09/19/2025 | STARR II | HSFE60-15-
0005 | February
2024 | Mendocino
County,
Unincorporated
Areas; Ukiah,
City of | | Pacific Ocean | 07/18/2017 | Baker
AECOM | HSFEHQ-09-
D-0368 /
HSFE09-10-J-
0002 | October
2013 | Fort Bragg, City of;
Mendocino
County,
Unincorporated
Areas;
Point Arena,
City of | | Robinson
Creek | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Russian River | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | April 1981 | Mendocino
County,
Unincorporated
Areas;
Ukiah, City of | | Russian River
Watershed
(Zone A) | N/A | N/A | N/A | N/A | Mendocino
County,
Unincorporated
Areas;
Ukiah, City of | | Scout Lake
Creek | 09/01/2022 | STARR II | HSFE60-15-
0005 | January 2017 | Mendocino
County,
Unincorporated
Areas | Table 28: Summary of Contracted Studies Included in this FIS Report, continued | Flooding
Source | FIS Report
Dated | Contractor | Number | Work
Completed
Date | Affected
Communities | |--|---------------------|--|--------------------|---------------------------|---| | South Fork
Eel River
Watershed
(Zone A) | N/A | N/A | N/A | N/A | Mendocino
County,
Unincorporated
Areas | | Sulphur Creek | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Tenmile Creek | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Town Creek | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | | Unnamed
Tributary
to Berry
Creek | 09/01/2022 | STARR II | HSFE60-15-
0005 | January 2017 | Mendocino
County,
Unincorporated
Areas | | Unnamed
Tributary to
McClure Creek | 00/40/2025 | CTADD II | HSFE60-17- | July 2019 | Mendocino
County, | | Unnamed
Tributary to
Russian River | 09/19/2025 | STARR II | J-0008 | July 2019 | Unincorporated
Areas | | Upp Creek | 09/01/2022 | STARR II | HSFE60-15-
0005 | January 2017 | Mendocino
County,
Unincorporated
Areas | | Upper Eel
River
Watershed
(Zone A) | N/A | N/A | N/A | N/A | Mendocino
County,
Unincorporated
Areas | | York Creek | 06/01/1983 | Anderson-
Nichols &
Company,
Inc. | H-4821 | March 1981 | Mendocino
County,
Unincorporated
Areas | # 7.2 Community Meetings The dates of the community meetings held for this Flood Risk Project and previous Flood Risk Projects are shown in Table 30. These meetings may have previously been referred to by a variety of names (Community Coordination Officer (CCO), Scoping, Discovery, etc.), but all meetings represent opportunities for FEMA, community officials, study contractors, and other invited guests to discuss the planning for and results of the project. **Table 29: Community Meetings** | Community | FIS Report
Dated | Date of Meeting | Meeting Type | Attended By | |---|---------------------|-----------------|----------------------|--| | Fort Brown Oits of | 07/40/0047 | 01/21/2015 | Flood Risk
Review | Federal Emergency Management Agency (FEMA), the community, and the study contractor (BakerAECOM) | | Fort Bragg, City of | 07/18/2017 | 09/23/2015 | Final CCO | FEMA, this community, and the study contractor (BakerAECOM) | | Mendocino County,
Unincorporated Areas | 09/19/2025 | 02/17/2021 | Flood Risk
Review | FEMA, California Department of Water Resources, the community, and the study contractor | | Offincorporated Areas | | 08/16/2022 | Final CCO | FEMA, California Department of Water Resources, the community, and the study contractor | | Pinoleville Pomo | 09/19/2025 | 02/17/2021 | Flood Risk
Review | FEMA, California Department of Water Resources, and the study contractor | | Nation | | 08/16/2022 | Final CCO | FEMA, California Department of Water Resources, the community, and the study contractor | | Point Arona City of | 07/18/2017 | 01/21/2015 | Flood Risk
Review | FEMA, the community, and the study contractor (BakerAECOM) | | Point Arena, City of | 07/16/2017 | 09/23/2015 | Final CCO | FEMA, the community, and the study contractor (BakerAECOM) | | Ukiah, City of | 09/19/2025 | 02/17/2021 | Flood Risk
Review | FEMA, California Department of Water Resources, the community, and the study contractor | | - | | 08/16/2022 | Final CCO | FEMA, California Department of Water Resources, the community, and the study contractor | | Willita City of | 09/01/2022 | 11/23/2015 | Initial CCO | FEMA, the community, and the study contractor | | Willits, City of | 09/01/2022 | 2/25/2021 | Final CCO | FEMA, the community, and the study contractor | ### **SECTION 8.0 – ADDITIONAL INFORMATION** Information concerning the pertinent data used in the preparation of this FIS Report can be obtained by submitting an order with any required payment to the FEMA Engineering Library. For more information on this process, see www.fema.gov. The additional data that was used for this project includes the FIS Report and FIRM that were previously prepared for Mendocino County (FEMA 2017). Table 30 is a list of the locations where FIRMs for Mendocino County can be viewed. Please note that the maps at these locations are for reference only and are not for distribution. Also, please note that only the maps for the community listed in the table are available at that particular repository. A user may need to visit another repository to view maps from an adjacent community. **Table 30: Map Repositories** | Community | Address | City | State | Zip Code | |---|---|-------------
-------|----------| | Fort Bragg, City of | Community Development
Department
416 North Franklin Street | Fort Bragg | CA | 95437 | | Mendocino County,
Unincorporated Areas | Mendocino County
Planning and Building
Services Department
860 North Bush Street | Ukiah | CA | 95482 | | Pinoleville Pomo Nation | Environmental Department
500 B Pinoleville Drive | Ukiah | CA | 95482 | | Point Arena, City of | City Hall
451 School Street | Point Arena | CA | 95468 | | Ukiah, City of | City Hall
300 Seminary Avenue | Ukiah | CA | 95482 | | Willits, City of | City Planning Department
111 East Commercial Street | Willits | CA | 95490 | The National Flood Hazard Layer (NFHL) dataset is a compilation of effective FIRM Databases and LOMCs. Together they create a GIS data layer for a State or Territory. The NFHL is updated as studies become effective and extracts are made available to the public monthly. NFHL data can be viewed or ordered from the website shown in Table 31. Table 31 contains useful contact information regarding the FIS Report, the FIRM, and other relevant flood hazard and GIS data. In addition, information about the State NFIP Coordinator and GIS Coordinator is shown in this table. At the request of FEMA, each Governor has designated an agency of State or territorial government to coordinate that State's or territory's NFIP activities. These agencies often assist communities in developing and adopting necessary floodplain management measures. State GIS Coordinators are knowledgeable about the availability and location of State and local GIS data in their state. **Table 31: Additional Information** | | FEMA and the NFIP | |--|--| | FEMA and FEMA
Engineering Library website | www.fema.gov/flood-maps/products-tools/know-your-risk/engineers-surveyors-architects | | NFIP website | www.fema.gov/flood-insurance | | NFHL Dataset | msc.fema.gov | | FEMA Region IX | 1111 Broadway, Suite 1200
Oakland, CA 94607-4052
(510) 627-7029 | | | Other Federal Agencies | | USGS website | www.usgs.gov | | Hydraulic Engineering Center website | www.hec.usace.army.mil | | 9 | State Agencies and Organizations | | State NFIP Coordinator | Kelly Soule, P.E., MBA California Department of Water Resources 3464 El Camino Avenue, Suite 200 Sacramento, CA 95821 (916) 574-2314 kelly.soule@water.ca.gov | | State GIS Coordinator | David Harris Agency Information Officer California Resources Agency 1416 Ninth Street, Room 1311 Sacramento, CA 95814 (916) 445-5088 david.harris@resources.ca.gov | # **SECTION 9.0 – BIBLIOGRAPHY AND REFERENCES** Table 32 includes sources used in the preparation of and cited in this FIS Report as well as additional studies that have been conducted in the study area. Table 32: Bibliography and References | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication Date/ Date of Issuance | Link | |-------------------------|--|---|--|--------------------------|------------------------------------|---| | BIA 2018 | Bureau of Indian
Affairs (BIA) | Pinoleville Pomo Nation
Tribal Boundary | Bureau of Indian
Affairs (BIA) | Washington,
D.C. | January 2018 | https://biamaps.doi.gov/bogs/da
tadownload.html | | CASIL
1997 | California Spatial
Information Library | Public Land Survey
System | California Spatial
Information
Library | Ventura, CA | October 28,
1997 | http://portal.gis.ca.gov/geoportal
/catalog/main/home.page | | CDTFA
2021 | California State
Geoportal | Political Area | California
Department of Tax
and Fee
Administration | Sacramento,
CA | August 4,
2021 | https://gis.data.ca.gov/datasets/
CDTFA::boe-citycounty-
20210804/explore?location=37.
118341%2C-
119.306399%2C6.83 | | CH2M Hill,
Inc. 1979 | CH2M Hill, Inc. | Russian River Bridge on
Vichy Springs Road
Drainage Study | CH2M Hill, Inc. | Redding,
California | February 1979 | _ | | California
1965 | State of California,
Department of
Water Resources | Flood! December 1964 -
January 1965,
Bulletin 161 | _ | _ | January 1965 | _ | | Dobson 1967 | Stanford University | A Program to Construct
Refraction Diagrams and
Compute Wave Heights for
Waves Moving into
Shoaling Waters | R. S. Dobson | Stanford,
California | March 1967 | _ | | Felton 1965 | Pacific Books | California's Many Climates | E. L. Felton | Palo Alto,
California | 1965 | _ | | FEMA 1979 | Federal Emergency
Management
Agency | FIS Backup Data
Mendocino County,
California | Federal
Emergency
Management
Agency | Washington,
D.C. | January 1979 | https://msc.fema.gov | Table 32: Bibliography and References (continued) | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article,"
Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|---|--|--|-------------------------|---|---| | FEMA 1982 | Federal Emergency
Management
Agency,
Federal Insurance
Administration | Flood Insurance Rate Map,
City of Fort Bragg,
Mendocino County,
California | _ | Washington,
D.C. | December 7,
1982 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 1982(a) | Federal Emergency
Management
Agency | Flood Boundary and
Floodway Map, City of
Willits, Mendocino County,
California | Federal
Emergency
Management
Agency | Washington,
D.C. | July 19,
1982 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 1984 | Federal Emergency
Management
Agency | Flood Insurance Rate Map,
City of Point Arena,
Mendocino County,
California | _ | Washington,
D.C. | August 3,
1984 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 1985 | Federal Emergency
Management
Agency | Flood Insurance Study,
City of Ukiah, Mendocino
County, California | _ | Washington,
D.C. | August 5,
1985 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 1985(a) | Federal Emergency
Management
Agency | Flood Boundary and
Floodway Map, City of
Ukiah, Mendocino
County, California | Federal
Emergency
Management
Agency | Washington,
D.C. | August 5,
1985 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 1986 | Federal Emergency
Management
Agency | Flood Insurance Study,
City of Point Arena,
Mendocino County,
California | _ | Washington,
D.C. | June 3,
1986 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 1988 | Federal Emergency
Management
Agency | Flood Insurance Study
and Flood Insurance
Rate Maps of City of
Willits, Mendocino
County, California | _ | Washington,
D.C. | September 30,
1988 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 1988(a) | Federal Emergency
Management
Agency | Flood Boundary and
Floodway Map,
Mendocino County
Unincorporated Areas,
California | Federal
Emergency
Management
Agency | Washington,
D.C. | September 30,
1988 | FEMA Flood Map Service
Center https://msc.fema.gov | Table 32: Bibliography and References (continued) | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|---|--|-------------------------|---|---| | FEMA 1992(a) | Federal
Emergency
Management
Agency | Flood Insurance Study,
City of Fort Bragg,
Mendocino County,
California | _ | Washington,
D.C. | June 16,
1992 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 1992(b) | Federal Emergency
Management
Agency | Flood Insurance Study,
Mendocino County,
California, Unincorporated
Areas | | Washington,
D.C. | June 16,
1992 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 2005 | Federal Emergency
Management
Agency | Flood Insurance Study,
Lake County, California
and Incorporated Areas | _ | Washington,
D.C. | September 30,
2005 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 2011 | Federal Emergency
Management
Agency | Flood Insurance Study and
Flood Insurance Rate Maps
of Mendocino County
Unincorporated Areas | Federal
Emergency
Management
Agency | Washington,
D.C. | June 2, 2011 | https://msc.fema.gov/portal/home | | FEMA 2012 | Federal Emergency
Management
Agency | Letter of Map Change,
Mendocino County,
California (12-09-1922P) | Federal
Emergency
Management
Agency | Washington,
D.C. | December 3, 2012 | https://msc.fema.gov/port
al/home | |
FEMA 2013 | Federal Emergency
Management
Agency | Letter of Map Change,
Mendocino County,
California (12-09-2827P) | Federal
Emergency
Management
Agency | Washington,
D.C. | February 28,
2013 | https://msc.fema.gov/portal/home | | FEMA 2014 | Michael Baker Jr.,
Inc | Mendocino County,
California Flood Data
Updates - Coastal OPC
PMR | Michael Baker Jr.,
Inc | Washington,
D.C. | January 2014 | _ | | FEMA 2015 | Federal Emergency
Management
Agency | Flood Insurance Study,
Sonoma County,
California and
Incorporated Areas | _ | Washington,
D.C. | October 2,
2015 | FEMA Flood Map Service
Center https://msc.fema.gov | Table 32: Bibliography and References (continued) | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|---|--|--|-------------------------|---|---| | FEMA 2015(a) | Federal Emergency
Management
Agency | Letter of Map Change,
Mendocino County,
California (14-09-3500P) | Federal
Emergency
Management
Agency | Washington,
D.C. | January 29,
2015 | https://msc.fema.gov/portal/
home | | FEMA 2016 | Federal Emergency
Management
Agency | Guidance for Flood Risk
Analysis and Mapping,
Automated Engineering | Federal
Emergency
Management
Agency | Washington,
D.C. | May 2016 | https://www.fema.gov/
media-
library/assets/documen
ts/34519 | | FEMA 2016(a) | Federal Emergency
Management
Agency | Flood Insurance Study,
Trinity County, California
and Incorporated Areas | _ | Washington,
D.C. | July 20, 2016 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 2016(b) | Federal Emergency
Management
Agency | Flood Insurance Study,
Humboldt County,
California and
Incorporated Areas | _ | Washington,
D.C. | November 4,
2016 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 2017 | Federal Emergency
Management
Agency | Flood Insurance Study,
Sonoma County,
California and
Incorporated Areas | _ | Washington,
D.C. | March 7,
2017 | FEMA Flood Map Service
Center https://msc.fema.gov | | FEMA 2017(a) | Federal Emergency
Management
Agency | Data Capture Technical
Reference | Federal
Emergency
Management
Agency | Washington,
D.C. | July 13, 2017 | https://www.fema.gov/
media-
library/assets/documen
ts/34519 | | FEMA 2017(b) | Federal Emergency
Management
Agency | Flood Insurance Rate
Map (FIRM) Database
Technical Reference | Federal
Emergency
Management
Agency | Washington,
D.C. | July 13, 2017 | https://www.fema.gov/
media-
library/assets/documen
ts/34519 | Table 32: Bibliography and References (continued) | Citation
in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication Date/ Date of Issuance | Link | |-------------------------|--|--|--|-------------------------|------------------------------------|---| | FEMA 2017(c) | Federal Emergency
Management
Agency | Mendocino County,
California - Flood
Insurance Study | Federal
Emergency
Management
Agency | Washington,
D.C. | March 17,
2017 | https://msc.fema.gov/portal/advanceSearch#searchresultsanchor | | FEMA 2017(d) | Federal Emergency
Management
Agency | Mendocino County,
California - Flood
Insurance Study | Federal
Emergency
Management
Agency | Washington,
D.C. | July 18, 2017 | https://msc.fema.gov/portal/
advanceSearch#searchresults
anchor | | FEMA 2018 | Federal Emergency
Management
Agency | Terrain Capture for BLE
Zone A/ Orrs, Gibson, and
Doolin | Federal
Emergency
Management
Agency | Reston, VA | January 1,
2018 | | | FIA 1976 | U.S. Department of
Housing and Urban
Development,
Federal Insurance
Administration | Flood Hazard Boundary
Map, City of Willits,
Mendocino County,
California | _ | _ | July 30, 1976 | FEMA Flood Map Service
Center https://msc.fema.gov | | FIA 1978 | U.S. Department of
Housing and Urban
Development,
Federal Insurance
Administration | Flood Hazard Boundary
Map, Mendocino County,
California, Unincorporated
Areas | _ | _ | April 25,
1978 | FEMA Flood Map Service
Center https://msc.fema.gov | | Hunt 1959 | American Society of
Civil Engineers
(ASCE) | Design of Seawalls and
Breakwaters, Proceedings
of the ASCE, Vol. 85, No.
WW3 | I. J. Hunt | _ | 1959 | _ | | Mendocino | Mendocino County,
California, Planning
Department | County Zoning
Regulations, Section 20-
71 | _ | Ukiah,
California | _ | _ | Table 32: Bibliography and References (continued) | Citation
in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |---------------------------------------|---|---|-------------------------------------|------------------------------|---|---| | Mendocino
County 2008 | Mendocino County
GIS | Corporate Boundaries,
Street Centerlines | Mendocino
County GIS | Mendocino, CA | January 2008 | | | Meteorology
International,
Inc. | Meteorology
International, Inc. (for
California
Department of
Boating and
Waterways) | Deep-Water Wave
Statistics for the
California Coast | _ | _ | _ | | | NAUS 2000 | National Atlas of the United States | County boundary for the County of Mendocino | National Atlas of the United States | Reston, VA | January 2000 | | | NCDC 1944-
1983 | U.S. Department of
Commerce, National
Climatic Data Center | Meteorological Record
for San Francisco,
California, Airport | _ | Asheville, North
Carolina | 1944-1983 | National Centers for
Environmental Information
www.ncdc.noaa.gov/ | | NCDC 1955-
1983 | U.S. Department of
Commerce, National
Climatic Data Center | Three- Hourly North
American Surface Weather
Maps | _ | Asheville, North
Carolina | 1955-1983 | National Centers for Environmental Information www.ncdc.noaa.gov/ | | NGS 2002 | National Geodetic
Survey | Permanent Bench Mark
Data Sheets | National Geodetic
Survey | Washington,
D.C. | January 2002 | | | NOAA 1945-
1983 | | Tide Tables, High and Low
Water Predictions, West
Coast of North and South
America | _ | _ | 1945-1983 | National Oceanic and
Atmospheric
Administration
www.noaa.gov/ | Table 32: Bibliography and References (continued) | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication Date/ Date of Issuance | Link | |-------------------------------------|--|--|---|------------------------------|------------------------------------|---| | NOAA 1945-
1983 | U.S. Department of
Commerce,
National Oceanic and
Atmospheric
Administration | Tide Tables, High and Low
Water Predictions, West
Coast of North and South
America | _ | _ | 1945-1983 | National Oceanic and
Atmospheric Administration
www.noaa.gov/ | | NOAA 2017 | National
Oceanic and
Atmospheric
Administration | U.S. Hydrometeorological
Design Studies Center
Precipitation Frequency
Data Server (PFDS) | National Oceanic
and Atmospheric
Administration | Washington,
D.C. | April 21, 2017 | https://hdsc.nws.noaa.gov/hdsc
/pfds/pfds_map_cont.html?bkm
rk=ca | | Noyo 1989 | Noyo Port District,
Noyo Harbor District | Request for Proposal
Waterfront Restoration
Plan | _ | _ | May 17, 1989 | _ | | Ott Water
1983(a) | Ott Water Engineers,
Inc. | Aerial Photography,
Scale 1:4,800,
Contour Interval 4 Feet | _ | _ | 1983 | _ | | Ott Water
1983(b) | Ott Water Engineers,
Inc. | Aerial Photography,
Point Arena Cove,
Scale 1:4,800,
Contour Interval 4 Feet | _ | _ | 1983 | _ | | Ott Water 1984 | Ott Water Engineers,
Inc. (for FEMA) | Northern California
Coastal Flood
Studies | _ | _ | August 1984 | _ | | Pacific Gas
and Electric
1979 | Pacific Gas and
Electric | Telephone
Communication | Paul Land | San Francisco,
California | April 1979 | _ | | Pagenkopf
1976 | R. M. Parsons
Laboratory, M.I.T.
(with modification
made by Ott Water
Engineers, Inc.) | A Two-Dimensional Finite
Element Circulation Model,
A User's Manual for
CAFE-1 | James R.
Pagenkopf | _ | August 1976 | _ | Table 32: Bibliography and References (continued) | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. |
Author/Editor | Place of
Publication | Publication Date/ Date of Issuance | Link | |----------------------------|---|---|---------------|-------------------------|------------------------------------|---| | Philip
Williams
1990 | Philip Williams and
Associates. Ltd. | Work Map, Flood
Insurance Study, Noyo
River, Mendocino County,
California, Scale 1:2,400,
Contour Interval 2 feet | _ | _ | October 31,
1990 | _ | | STARR 2019 | Federal Emergency
Management
Agency | Mendocino County,
California 2D Model | STARR II | Calverton, MD | _ | _ | | STARR 2020 | Federal Emergency
Management
Agency | Doolin Creek Flood Hazard
Study, Mendocino County,
California | STARR II | Calverton, MD | January 2020 | http://axis.na.atkinsglobal.com/n
a/Pages/default.aspx | | STARR
2020(a) | Federal Emergency
Management
Agency | Mendocino County,
California 1D Model | STARR II | Calverton, MD | _ | _ | | STARR 2021 | Federal Emergency
Management
Agency | Submittal Information | STARR II | Calverton, MD | July 23, 2021 | http://axis.na.atkinsglobal.com/n
a/Pages/default.aspx | | STARR
2021(a) | Federal Emergency
Management
Agency | Submittal Information | STARR II | Calverton, MD | September 28, 2021 | _ | | STARR II 2020 | Federal Emergency
Management
Agency | BLE Data Incorporation | STARR II | Washington,
D.C. | July 12, 2019 | https://msc.fema.gov | Table 32: Bibliography and References (continued) | Citation
in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication Date/ Date of Issuance | Link | |-------------------------|---|--|-----------------|------------------------------|------------------------------------|----------------------| | STARR II
2020(a) | Federal Emergency
Management
Agency | Gibson and Orrs Creeks
Hydraulic Analyses,
Mendocino County,
California | STARR II | Washington,
D.C. | 9/30/2020 | https://msc.fema.gov | | STARR II
2024 | Federal Emergency
Management Agency | Gibson Creek and Orrs
Creeks Revised Prelim,
Mendocino County,
California | STARR II | Washington,
D.C. | 5/1/2024 | _ | | Towill 1979(a) | Towill Corporation | Contour Map of the City of
Ukiah, Scale 1:4,800,
Contour Interval 5 Feet | _ | San Francisco,
California | September
1979 | _ | | Towill 1979(b) | Towill Corporation | Contour Map of the City of
Willits, Scale 1:4,800,
Contour Interval 5 Feet | _ | San Francisco,
California | September
1979 | _ | | URS 2008 | URS-Albuquerque | Flood Insurance Study of
Shasta County, CA | URS-Albuquerque | Albuquerque,
NM | 11/13/2008 | _ | | Towill 1979(a) | Towill Corporation | Contour Map of the City of
Ukiah, Scale 1:4,800,
Contour Interval 5 Feet | _ | San Francisco,
California | September
1979 | _ | | Towill 1979(b) | Towill Corporation | Contour Map of the City of
Willits, Scale 1:4,800,
Contour Interval 5 Feet | _ | San Francisco,
California | September
1979 | _ | | URS 2008 | URS-
Albuquerque | Flood Insurance Study of
Shasta County, CA | URS-Albuquerque | Albuquerque,
NM | November 13,
2008 | _ | Table 32: Bibliography and References (continued) | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication Date/ Date of Issuance | Link | |----------------------|--|--|---|------------------------------|------------------------------------|------| | URS 2008 | URS-Albuquerque | Flood Insurance Study of
Shasta County, CA | URS-Albuquerque | Albuquerque,
NM | November 13,
2008 | _ | | USACE (a) | U.S. Department of
the Army, Corps of
Engineers, San
Francisco District | Reservoir Regulation Manual
- Coyote Dam | _ | San Francisco,
California | _ | _ | | USACE (b) | U.S. Department of
the Army, Corps of
Engineers, San
Francisco District | High-Water-Mark Data for
Eel River, Flood of
December 1964 | _ | San Francisco,
California | _ | _ | | USACE (c) | U.S. Department of
the Army, Corps of
Engineers, San
Francisco District | High-Water-Mark Data for
Russian River, Flood of
December 1964 | _ | San Francisco,
California | _ | _ | | USACE 1956 | U.S. Department of
the Army, Corps of
Engineers, San
Francisco District | Report of Floods of
December 1955 and January
1956 in Northern California
Coastal Streams | _ | San Francisco,
California | June 1956 | _ | | USACE
1965(a) | U.S. Department of
the Army, Corps of
Engineers, San
Francisco District | Inspection of Northwestern
California Disaster Area | Special Subcommittee on Flood Disasters, Committee on Public Works, U.S. House of Representatives | San Francisco,
California | January 10-
12, 1965 | _ | Table 32: Bibliography and References (continued) | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|---|---|--------------------------------|------------------------------|---|---| | USACE
1965(b) | U.S. Department of
the Army, Corps of
Engineers, San
Francisco District | Report on Floods of
December 1964 in Northern
California Coastal Streams,
Volume III, Flood Plains on
the Eel River, Northern
California Coastal Streams,
and the Russian River | _ | San Francisco,
California | December
1965 | _ | | USACE 1974 | U.S. Department of
the Army, Corps of
Engineers, Waterway
Experiment Station | Flood Insurance Study:
Tsunami Prediction for
Pacific Coastal Communities,
Technical Report H-74-3 | J. R Houston &
A. W. Garcia | _ | May 1974 | _ | | USACE
1975(a) | U.S. Department of
the Army, Corps of
Engineers,
Galveston District | Guidelines for Identifying
Coastal High Hazard Zones | _ | _ | June 1975 | _ | | USACE
1975(b) | U.S. Department of
the Army, Office of
the Chief of
Engineers | Final Environmental
Statement, Maintenance
Dredging, Noyo River
Channel, Noyo Harbor,
Mendocino County,
California | _ | _ | August 1975 | _ | | USACE 1977 | U.S. Department of
the Army, Corps of
Engineers | Shore Protection Manual | _ | _ | 1977 | U.S. Army Corps of Engineers _
www.usace.army.mil/ | | USACE
1978(a) | U.S. Department of
the Army, Corps of
Engineers | California Coast Storm
Damage, Winter 1977-
1978 | G. W. Domurat | _ | 1978 | U.S. Army Corps of Engineers_
www.usace.army.mil/ | Table 32: Bibliography and References (continued) | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication Date/ Date of Issuance | Link | |----------------------|--|---|---------------------------------------|-------------------------|------------------------------------|--| | USACE
1978(b) | U.S. Department of
the Army, Corps of
Engineers, Coastal
Engineering
Research Center | Revised Wave Run-up
Curves for Smooth Slopes,
Technical Aid No. 78-2 | P. N. Stoa | _ | July 1978 | _ | | USACE
1978(c) | U.S. Department of
the Army, Corps of
Engineers, Waterway
Experiment Station | Flood Insurance Study:
Tsunami Prediction for the
West Coast of the
Continental United States,
Technical Report H-78-26 | J. R Houston &
A. W. Garcia | _ | December
1978 | _ | | USACE
1979(a) | U.S. Department of
the Army, Corps of
Engineers, Waterway
Experiment Station | Numerical Model for
Tsunami Inundation,
Technical Report HL-79-2 | J. R Houston &
H. L. Butler | - | February 1979 | _ | | USACE
1979(b) | U.S. Department of
the Army, Corps of
Engineers,
Hydrologic
Engineering Center | HEC-2 Water Surface
Profiles, Generalized
Computer Program, User's
Manual | _ | Davis,
California | August 1979 | U.S. Army Corps of Engineers Hydrologic Engineering Center www.hec.usace.army.mil/ | | USACE 1984 | U.S. Department of
the Army, Corps of
Engineers | Shore Protection Manual,
Volumes 1–3 | U.S.
Government
Printing Office | Washington,
D.C. | 1984 | U.S. Army Corps of Engineers_
www.usace.army.mil/ | | USACE 1997 | U.S. Department of
the Army, Corps of
Engineers | OEC 1997 Levee database | Army Corps of Engineers | Washington,
D.C. | January 1997 | _ | Table 32: Bibliography and References (continued) | Citation in this FIS | Publisher/
Issuer | Publication Title,
"Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |----------------------|--|--|--|--------------------------------------|---|--| | USACE 2018 | U.S. Army Corps of
Engineers
Hydrologic
Engineering Center | HEC-RAS River Analysis
System, Version 5.05 | _ | Davis,
California | June 2018 | _ | | U.S. Census
2008 | U.S. Department of Commerce, Bureau of the Census | "State & County
Quickfacts" | _ | Website.
accessed
October 2008 | 2008 | U.S. Census Bureau_
www.census.gov/ | | USCB 2018 | U.S. Department of
Commerce,
U.S. Census
Bureau, Geography | Transportation Lines | U.S. Department
of Commerce,
U.S. Census
Bureau,
Geography | Washington,
D.C. | January 2018 | https://www.census.gov/cgi-
bin/geo/shapefiles/index.php?ye
ar=2018&layergroup=Roads | | USDA 2005 | U.S. Department of
Agriculture - Farm
Service Agency | (NAIP) National Agriculture
Imagery Program | U.S. Department
of Agriculture -
Farm Service
Agency | Salt Lake City,
UT | November 15,
2010 | https://gdg.sc.egov.usda.gov\ | | USDA 2013 | U.S. Department of
Commerce, U.S.
Census Bureau,
Geography Division | TIGER/Line Files, 2013
Mendocino County | U.S. Department
of Commerce,
U.S. Census
Bureau,
Geography
Division | Washington,
D.C. | January 2013 | _ | | USDA 2014 | Department of
Agriculture - Farm
Service Agency | USDA-FSA-APFO NAIP
MrSID Mosaic -
Orthoimagery for
Mendocino County, CA -
2014 | Department of
Agriculture - Farm
Service Agency | Salt Lake City,
UT | January 2014 | _ | | USDA 2017 | U.S. Department of
Commerce, U.S.
Census Bureau,
Geography Division | TIGER/Line File -
Transportation Lines,
Mendocino, CA 2017 | U.S. Department
of Commerce,
U.S. Census
Bureau,
Geography
Division | Washington,
D.C. | January 2017 | _ | Table 32: Bibliography and References (continued) | Citation in this FIS | Publisher/
Issuer | Publication Title, "Article,"
Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |------------------------------|---|--|---|-------------------------|---|---------------------------------| | USDA/NRCS
2016 | USDA-NRCS
Aerial Photography | Base Map Imagery | USDA-NRCS
Aerial
Photography | Salt Lake City,
UT | 9/30/2016 | https://nrcs.app.box.com/v/naip | | USDA/NRCS
2021 | United States Department of Agriculture - Natural Resources Conservation Services | HUC8 Subbasins | United States Department of Agriculture - Natural Resources Conservation Services | Fort Worth, TX | September 9, 2021 | https://datagateway.nrcs.usda.g | | U.S. Department of Commerce | U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Tidal Datums and Information Branch, Tides an Water Levels Division | Summary of Extreme Water
Levels for San Francisco,
Point Reyes, Arena Cove,
and Crescent City | | _ | _ | | | USGS 1958 | U.S. Department of
the Interior,
Geological Survey | 15-Minute Series
Topographic Maps, Scale
1:62,500,
Contour Interval 80 Feet,
Ukiah, CA | _ | Washington,
D.C. | 1958 | USGS Store store.usgs.gov | | USGS 1961 | U.S. Department of
the Interior,
Geological Survey | 15-Minute Series
Topographic Maps, Scale
1:62,500, Contour Interval
80 Feet, Willits, CA | _ | Washington,
D.C. | 1961 | USGS Store store.usgs.gov/ | | USGS 1969 | U.S. Department of
the Interior,
Geological Survey | Floods of December 1964
and January 1965 Far
Western States, Water-
Supply Paper 1866 | _ | _ | 1969 | _ | Table 32: Bibliography and References (continued) | Citation
in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication Date/ Date of Issuance | Link | |-------------------------|--|---|--|---------------------------|------------------------------------|--| | USGS 1975 | U.S. Department of
the Interior,
Geological Survey | Supplementary Guidelines
for Flood Discharge
Computation in HUD
Type-15 Studies,
Technical Memorandum | _ | _ | May 5, 1975 | _ | | USGS 1977(a) | U.S. Department of
the Interior,
Geological Survey | Magnitude and Frequency
of Floods in California,
Water-Resources
Investigations Report,
77-21 | A. O. Waananen
& J. R. Crippen | Menlo Park,
California | June 1977 | USGS Publication Warehouse pubs.usgs.gov/wri/wri77-21/ | | USGS 1989 | U.S. Geological
Survey | USGS 7.5-minute
Series
Topographic Maps | U.S. Geological
Survey | Washington,
D.C. | January 1989 | _ | | USGS 1977(b) | U.S. Department of
the Interior,
Geological Survey | Guidelines for Determining
Flood Flow Frequency,
Hydrology Subcommittee,
Bulletin #17A | _ | Reston, VA | June 1977 | _ | | USGS 2006 | U.S. Geological
Survey | National Hydrography
Dataset | U.S. Geological
Survey | Reston,
VA | January 2006 | _ | | USGS 2009-
2011 | U.S. Geological
Survey / National
Oceanic and
Atmospheric
Administration | LiDAR OPC / USGS 2009 -
2011 & BATH NOAA | U.S. Geological
Survey / National
Oceanic and
Atmospheric
Administration | Washington,
D.C. | January 2011 | _ | | USGS 2012 | U.S. Geological
Survey | The StreamStats
Application for California | U.S. Geological
Survey | Reston,
VA | January 2012 | https://streamstats.usgs.gov/ss/ | Table 32: Bibliography and References (continued) | Citation
in this FIS | Publisher/
Issuer | Publication Title, "Article," Volume, Number, etc. | Author/Editor | Place of
Publication | Publication
Date/
Date of
Issuance | Link | |-------------------------|---|---|--|-------------------------|---|---| | USGS 2012(a) | U.S. Geological
Survey | Water-Resources Investigations Report 2012- 5113 Methods for Determining Magnitude and Frequency of Floods in California, Based on Data through Water Year 2006 | U.S. Geological
Survey | Reston, VA | January 2012 | https://pubs.usgs.gov/sir/2012/
5113/pdf/sir2012-5113.pdf | | USGS 2017 | U.S. Geological
Survey | California Water Science
Center | U.S. Geological
Survey | Reston, VA | December 18,
2017 | https://pa.water.usgs.gov/infod
ata/gisdata.php | | USGS 2017(a) | U.S. Geological
Survey | USGS National
Hydrography Dataset (NHD)
Best Resolution for
California State | U.S. Geological
Survey | Reston, VA | September 9,
2017 | https://www.sciencebase.gov/c
atalog/item/58c92391e4b0849c
e97b41cc | | USGS 2018 | U.S. Geological
Survey | Water lines and
water area | U.S. Geological
Survey | Reston, VA | August 21,
2018 | https://www.usgs.gov/core-
science-systems/ngp/national-
hydrography/access-national-
hydrography-products | | USGS 2018(a) | U.S. Geological
Survey | National Water Information
System: Web Interface | U.S. Geological
Survey | Reston, VA | January 5,
2018 | https://nwis.waterdata.usgs.
gov/CA/nwis/ | | USGS 2018(b) | U.S. Geological
Survey | United States Geological
Survey National Map Viewer | U.S. Geological
Survey | Reston,
VA | January 2018 | https://viewer.nationalmap.g
ov/basic/ | | van der Meer
2002 | Technical Advisory
Committee for
Water Retaining
Structures (TAW) | Wave Run-up and Wave
Overtopping at Dikes,
Technical Report | J. W. van der
Meer | Delft,
Netherlands | May 2002 | _ | | Winsler & Kelly
1970 | Winsler and Kelly
Consulting Engineers
(for Humboldt County
Board of
Supervisors) | Humboldt County Water
Requirements and Water
Resources, Phase 1 | Winsler and Kelly
Consulting
Engineers | Eureka,
California | May 1970 | |