ANNUAL WATER OUALLTY REPORT

Presented By
Ukiah Valley Water Authority

Our Commitment

We are pleased to present to you this year's annual water quality report. This report is a snapshot of last year's water quality covering all testing performed between January 1 and December 31, 2024. Included are details about your sources of water, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and providing you with this information because informed customers are our best allies.

Where Does My Water Come From?

Millview County Water District (CWD) has two groundwater wells and a surface water treatment plant that utilizes water under the influence of the Russian River. Calpella has one groundwater well, the water from which is blended with Millview water via interties. Redwood Valley purchases water through another intertie with Millview, and this is blended with water treated at the surface water treatment plant drawing water from Lake Mendocino.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. Millview meets the third Tuesday of each month, Calpella meets the third Wednesday, and Redwood Valley meets the third Thursday. They all meet via Zoom or in person at 151 Laws Avenue, Ukiah.

Safeguard Your Drinking Water

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain it to reduce leaching to water sources, or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use U.S. EPA's Adopt Your Watershed to locate groups in your community.
- Organize a storm drain stenciling project with others in your neighborhood. Stencil a message next to the street drain reminding people "Dump No Waste – Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body.

Reporting UCMR5 Data

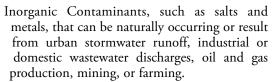
When participated in the fifth stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR5) program by performing additional tests on our drinking water. UCMR5 sampling benefits the environment and public health by providing the U.S. EPA with data on the occurrence of contaminants suspected to be in drinking water to determine if U.S. EPA needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data is available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminant Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about

drinking water from their health-care providers. U.S. Environmental Protection Agency (U.S. EPA)/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or epa.gov/safewater.

QUESTIONS?


For more information about this report, or for any questions relating to your drinking water, please call Lane Westbrook, Water Treatment Operator, at (707) 467-2842.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

Radioactive Contaminants that can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NS: No standard.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

PDWS (Primary Drinking Water Standard): MCLs and MRDLs for contaminants that affect health, along with their monitoring and reporting requirements and water treatment requirements.

PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

 $ppb\ (\mu g/L)\ (parts\ per\ billion):$ One part substance per billion parts water (or micrograms per liter).

ppm (mg/L) (parts per million): One part substance per million parts water (or milligrams per liter).

TON (Threshold Odor Number): A measure of odor in water.

µmho/cm (micromhos per centimeter): A unit expressing the amount of electrical conductivity of a solution.

Water Conservation Tips

You can play a role in conserving water and saving yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data is included, along with the year in which the sample was taken.

REGULATED SUBSTANCES										
SUBSTANCE (UNIT OF MEASURE)				YEAR AMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	I TYPICAL SOURCE
Aluminum (ppm)				2024	1	0.6	0.051	ND-0.11	No	Erosion of natural deposits; residue from some surface water treatment processes
Chlorine (ppm)				2024	[4.0 (as Cl2)]	[4 (as Cl2)]	1.02	0.3–1.65	No	Drinking water disinfectant added for treatment
Fluoride (ppm)				2024	2.0	1	0.03	ND-0.2	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilize and aluminum factories
HAA5 [sum of 5 haloacetic acids] (ppb)			pb)	2024	60	NA	9.2	2.8–15.6	No	By-product of drinking water disinfection
Hexavalent Chromium (ppb)				2024	10	0.02	0.02 0.1		No	Erosion of natural deposits; transformation of naturally occurring trivalent chromium to hexavalent chromium by natural processes and human activities such as discharges from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities
Nitrate [as nitrate] (ppm)				2024	45	45	0.7	0.45–1.8	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Toluene (ppb)				2021	150	150	0.83	ND-1.4	No	Discharge from petroleum and chemical factories; underground gas tank leaks
TTHMs [total trihalomethanes] (ppb)			o)	2024	80	NA	15.18	6.8–23.5	No	By-product of drinking water disinfection
Tap water samples were	e collected fo	r lead a	nd coppe	r analyses	from sampl	e sites throu	ighout the con	nmunity		
LEAD AND COPPER	SAMPLE DATE	AL	PHG		PERCENTILE DETECTED		RANGE NO. SITES		VIOLATION	TYPICAL SOURCE OF CONTAMINANT
LEAD										
Millview	2024	15	0.2		ND	NA	NA 0/20		No	Internal corrosion of household water plumbing systems, discharges from industrial manufacturers, erosion of natural deposits
Calpella	2024	15	0.2		ND	NA	NA (No	
Redwood Valley	2022	15	0.2		ND	ND-	ND-18 1.		No	
COPPER										
Millview	2024	1.3	0.3		0.73	ND-0	ND-0.91 0/20		No	
Calpella	2024	1.3	0.3		0.16	ND-0	ND-0.63 0/10		No	Internal corrosion of household water plumbing systems, discharges from industrial manufacturers, erosion of natural deposits, leaching from wood preservatives
Redwood Valley	2022	1.3	0.3		0.45	ND-0	.77	0/20	No	mandactures, crosson or natural deposits, reaching from wood preservatives

SECONDARY SUBSTANCES							
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	PHG (MCLG)	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Chloride (ppm)	2024	500	NS	5	2.7-9.8	No	Runoff/leaching from natural deposits; seawater influence
Color (units)	2024	15	NS	7	ND-15	No	Naturally occurring organic materials
Iron (ppb)	2021	300	NS	1.2	ND-190	No	Leaching from natural deposits; industrial wastes
Manganese (ppb)	2024	50	NS	15	ND-180	No	Leaching from natural deposits
Odor, Threshold (TON)	2024	3	NS	13	ND-28	No	Naturally occurring organic materials
Specific Conductance (µmho/cm)	2024	1,600	NS	221	170-430	No	Substances that form ions when in water; seawater influence
Sulfate (ppm)	2024	500	NS	9	2–10	No	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	2024	1,000	NS	132	100-270	No	Runoff/leaching from natural deposits
Turbidity (NTU)	2024	5	NS	0.83	ND-1.4	No	Soil runoff
Zinc (ppm)	2024	5.0	NS	0.0004	ND-0.158	No	Runoff/leaching from natural deposits; industrial wastes

UNREGULATED SUBSTANCES ¹							
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE			
Bicarbonate (ppm)	2024	104	80–200	Forms naturally when carbon dioxide dissolves in water			
Calcium (ppm)	2024	20	16–28	Forms naturally from erosion			
Magnesium (ppm)	2024	11	8–17	Natural leaching of magnesium-rich rocks and minerals			
Sodium (ppm)	2024	10	6–63	Mineral deposits; salt used in road deicing			
Total Alkalinity (ppm)	2024	104	80–200	Forms naturally from erosion of carbonate rocks or limestone			
Total Hardness (ppm)	2024	95	72–139	Forms naturally from erosion of limestone, chalk, or gypsum			

¹ Unregulated contaminant monitoring helps U.S. EPA and the SWRCB determine where certain contaminants occur and whether the contaminants need to be regulated.

Lead in Home Plumbing

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. Ukiah Valley Water Authority is responsible for providing high-quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter certified by an American National Standards Institute-accredited certifier to reduce lead is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure it is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling does not remove lead from water.

Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, or doing laundry or a load of dishes. If you have a lead service line (LSL) or galvanized service line requiring replacement, you may need to flush your pipes for a longer period. If you are concerned about lead and wish to have your water tested, contact Ukiah Valley Water Authority, Lane Westbrook]. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at epa.gov/safewater/lead.

To address lead in drinking water, public water systems were required to develop and maintain an inventory of service line materials by October 16, 2024. Developing an inventory and identifying the location of LSLs is the first step for beginning LSL replacement and protecting public health. No LSLs were found in our inventory, which is available upon request. Please contact us if you would like more information about the inventory or any lead sampling that has been done.

