

ANNUAL WATER OUALITY REPORT

Reporting Year 2023

Presented By
City of Ukiah

Our Commitment

We are pleased to present to you this year's annual water quality report. This report is a snapshot of last year's water quality covering all testing and the same of the same last year's water quality covering all testing performed between January 1 and December 31, 2023. Included are details about your sources of water, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and providing you with this information because informed customers are our best allies.

Community Participation

p egularly scheduled Ukiah City Council meetings convene Ron the first and third Wednesday of each month at 6:00 p.m. at the Ukiah Civic Center, 300 Seminary Avenue. These meetings provide citizens with the opportunity to express concerns regarding the city's drinking water.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health I problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. (If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.) If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or epa.gov/safewater/lead.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. Environmental Protection Agency (U.S.

EPA)/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or water.epa.gov/drink/ hotline.

Source Water Assessment

In December 2021, the City of Ukiah completed a source water assessment. This study considered the topography, type

of vegetative cover, soil type, type

of animal life, and climate conditions of our watershed. Combined with human-related recreation, industry, and lifestyle, several areas were considered to have influence on our raw waters. The influence was considered to be minimal, and several areas of concern have been mitigated. These include landfill closure, replacement of leaking underground storage tanks, and bulk fuel containment.

The City of Ukiah is continually upgrading its system and monitors for a variety of possible hazards. Our water is still considered safe and reliable. According to the results of the vulnerability analysis, the surface water source is considered most vulnerable (vulnerability score of 15) to activities not associated with any detected contaminants at the following locations:

- Gas stations
- Plastic synthetic producers
- Historic gas stations
- Historic waste dumps/landfills
- · Historic mining operations
- · Confirmed leaking tanks
- Wastewater treatment and disposal facilities
- Managed forests
- Septic systems, high

To access the complete report, contact Water Treatment Plant staff at (707) 467-2842 or mwagenet@cityofukiah.com.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please contact Shelly Wagenet, Water Treatment Plant Supervisor, at (707) 467-2842.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

Inorganic Contaminants, such as salts and metals, that can be naturally occurring or can result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses:

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems;

Radioactive Contaminants that can be naturally occurring or can be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA Safe Drinking Water Hotline at (800) 426-4791.

Where Does My Water Come From?

The City of Ukiah supplies its customers with water that is considered underflow from Russian River as well as from four groundwater sources. The amounts of water delivered from each source and when they are used depend on both the demand on the system and the time of year. In times of emergency, the city may have to purchase water from our neighboring water systems, Millview County Water District and Willow County Water District.

Test Results

SECONDARY SUBSTANCES

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels. The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken. We participated in the fifth stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR5) program by performing additional tests on our drinking water. UCMR5 sampling benefits the environment and public health by providing the U.S. EPA with data on the occurrence of contaminants suspected to be in drinking water to determine if it needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data is available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminant Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTANCES												
				Distributio	on System	Surface	Water	Gro	undwater			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE	
Barium (ppm)	2023	1	2	ND	NA	ND	NA	0.0401,2	ND-0.100 ^{1,2}	No	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits	
Chlorine (ppm)	2023	[4.0 (as Cl2)]	[4 (as Cl2)]	0.87	0.48-1.58	NA	NA	NA	NA	No	Drinking water disinfectant added for treatment	
Fluoride (ppm)	2023	2.0	1	ND	NA	ND	NA	0.042	ND-0.11 ²	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories	
Nitrate [as nitrate] (ppm)	2023	45	45	0.63	NA	0.45	NA	1.7	1.4–2.1	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits	
Turbidity ³ (NTU)	2023	TT	NA	NA	NA	0.192	NA	NA	NA	No	Soil runoff	
Turbidity (lowest monthly percent of samples meeting limit)	2023	TT = 95% of samples meet the limit	NA	NA	NA	100	NA	NA	NA	No	Soil runoff	

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	PHG (MCLG)	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2023	1.3	0.3	0.260	0/34	No	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead (ppb)	2023	15	0.2	ND	0/34	No	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits

SECOND/ III. SC	SECONDAIN SECONDAINES												
				Distribut	tion System	Surface Water		Groundwater					
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	PHG (MCLG)	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE		
Chloride (ppm)	2023	500	NS	10	NA	6.1	NA	9.1 ²	7.2–13 ²	No	Runoff/leaching from natural deposits; seawater influence		
Corrosivity (units)	2023	Noncorrosive	NS	10.9	NA	10.59	NA	11.3 ²	10.5–11.6 ²	No	Natural or industrially influenced balance of hydrogen, carbon, and oxygen in the water affected by temperature and other factors		
Specific Conductance (µmho/cm)	2023	1,600	NS	250	NA	200	NA	330¹	290–360¹	No	Substances that form ions when in water; seawater influence		
Sulfate (ppm)	2023	500	NS	13	NA	12	NA	16 ²	13–19 ²	No	Runoff/leaching from natural deposits; industrial wastes		
Total Dissolved Solids (ppm)	2023	1,000	NS	150	NA	120	NA	2042	180-230 ²	No	Runoff/leaching from natural deposits		
Turbidity (NTU)	2023	5	NS	0.118	0.067-0.261	NA	NA	0.051	0.001-1.0	No	Soil runoff		

		Distribut	ion System	Surfac	e Water	Grour	Groundwater		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid [6:2FTS] (ppb)	2023	NA	NA	NA	NA	0.0022	ND-0.0178	NA	
Bicarbonate (ppm)	2023	110	NA	93	NA	142 ²	110-160 ²	NA	
Boron (ppb)	2023	180	NA	170	NA	112¹	ND-430 ¹	NA	
Calcium (ppm)	2023	21	NA	19	NA	30^{2}	25-35 ²	NA	
Chlorate (ppb)	2015	64	41–98	8.75	ND-35	125	52-290	NA	
Chromium, Total (ppb)	2015	0.15	ND-0.38	0.2	ND-0.4	0.11	ND-0.33	NA	
Chromium-6 (ppb)	2015	0.113	0.033-0.180	0.10	0.06-0.14	0.09	0.035-0.13	NA	
Magnesium (ppm)	2023	12	NA	10	NA	19 ²	17-22 ²	NA	
Molybdenum (ppb)	2015	0.67	ND-2.1	ND	NA	0.68	ND-2.1	NA	
Perfluorobutanesulfonic Acid [PFBS] (ppb)	2023	NA	NA	0.0037	ND-0.0062	0.0005	ND-0.0041	NA	
Perfluorobutanoic Acid [PFBA] (ppb)	2023	NA	NA	0.0012	ND-0.0092	NA	NA	NA	
Perfluoroheptanoic Acid [PFHpA] (ppb)	2023	NA	NA	0.0004	ND-0.0033	NA	NA	NA	
Perfluorohexanesulfonic Acid [PFHxS] (ppb)	2023	NA	NA	0.0027	ND-0.0073	NA	NA	NA	
Perfluorohexanoic Acid [PFHxA] (ppb)	2023	NA	NA	0.0009	ND-0.0044	NA	NA	NA	
Perfluorooctanesulfonic Acid [PFOS] (ppb)	2023	NA	NA	0.0031	ND-0.0074	NA	NA	NA	
$\textbf{Perfluorooctanoic Acid [PFOA]} \ (ppb)$	2023	NA	NA	0.0009	ND-0.0069	NA	NA	NA	
Perfluoropentanoic Acid [PFPeA] (ppb)	2023	NA	NA	0.0006	ND-0.0051	NA	NA	NA	
Sodium (ppm)	2023	17	NA	11	NA	17 ²	12-222	NA	
Strontium (ppb)	2015	251	210–320	213	200–220	263	230-300	NA	
Total Alkalinity (ppm)	2023	110	NA	93	NA	142 ²	110-160 ²	NA	
Total Hardness (ppm)	2023	102	NA	91	NA	155²	142-181 ²	NA	
Vanadium (ppb)	2015	1.2	0.57-1.8	0.72	0.41-1.3	1.18	0.35-1.8	NA	

TOTAL TRIHALOMETHANES (PPB)	MCL	2022 2 ND QTR	2022 3 RD QTR	2022 4 TH QTR	2022 LRAA	2023 1 ^{sτ} QTR	2023 2 ND QTR	2023 3 RD QTR	2023 4 [™] QTR	2023 LRAA	SOURCE
Site #1	80	23.4	28.8	0.0	13.1	0.0	0.0	13.2	21.9	8.8	By-product of
Site #2	80	15.8	18.9	0.0	8.7	0.0	0.0	8.4	11.1	4.9	drinking water disinfection.
Site #3	80	23.4	14.9	4.9	11.8	1.3	0.0	19.1	24.0	11.1	disilifection.
Site #4	80	27.0	30.2	5.5	16.5	6.1	3.6	14.2	22.9	11.7	
TOTAL TRIHALOMETHANES (PPB)	MCL	2022 2 ND QTR	2022 3 RD QTR	2022 4 TH QTR	2022 LRAA	2023 1 ST QTR	2023 2 ND QTR	2023 3 RD QTR	2023 4 TH QTR	2023 LRAA	SOURCE
		10.2	22.1	0.0	10.3	0.0	0.0	7.7	15.3	5.8	By-product of
Site #1	60	19.2	22,1	0.0	10.5	0.0	0.0	, -,	17.5	2.0	, r
Site #1 Site #2	60	19.2	13.4	0.0	6.4	0.0	0.0	5.1	10.7	4.0	drinking water
								7			, r

¹ Sampled in 2021. ² Sampled in 2022.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Regulatory Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum
Contaminant Level):
The highest level of a
contaminant that is allowed
in drinking water. Primary
MCLs are set as close to
the PHGs (or MCLGs)
as is economically and
technologically feasible.
Secondary MCLs (SMCLs)
are set to protect the odor,
taste, and appearance of
drinking water.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

MRDL (Maximum Residual Disinfectant

Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected):

Indicates that the substance was not found by laboratory analysis.

NS: No standard.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5

the average person.

PDWS (Primary Drinking Water Standard):

NTU is just noticeable to

MCLs and MRDLs for contaminants that affect health, along with their monitoring and reporting requirements and water treatment requirements.

PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

ppb (μg/L) (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (mg/L) (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique):
A required process intended to reduce the level of a contaminant in drinking

µmho/cm (micromhos per centimeter): A unit expressing the amount of electrical conductivity of a solution.

³ Turbidity is a measure of the cloudiness of the water. We monitor this because it is a good indicator of the effectiveness of our filtration system.

⁴Unregulated contaminant monitoring helps U.S. EPA and the SWRCB determine where certain contaminants occur and whether the contaminants need to be regulated.